典型文献
改进双分支胶囊网络的高光谱图像分类
文献摘要:
基于双分支的胶囊网络分类方法在两个通道分别提取光谱信息和空间信息,既保留了双分支卷积神经网络的特征提取方式,又提高了分类精度.但由于高光谱图像(HSI)通常由几百个通道组成,在训练胶囊网络时,动态路由过程产生了大量的训练参数.为此提出1D和2D约束窗口分别减少来自两个提取通道的胶囊数量.它以胶囊向量组为计算单位进行卷积运算,来减少胶囊网络的参数量和计算复杂度.基于该降参优化方法提出一个新的双分支胶囊神经网络(DuB-ConvCapsNet-MRF),并将其应用在高光谱图像分类任务中.此外,为进一步提高分类性能,引入马尔可夫随机场(MRF)对空间区域进行平滑后处理,获得最终输出.对两个代表性高光谱图像数据集进行消融实验并与现有的6个分类方法进行比较,结果表明,DuB-ConvCapsNet-MRF在分类精度上都优于其他方法,并且有效降低了胶囊网络的训练代价.
文献关键词:
遥感;高光谱图像分类;胶囊神经网络;约束窗口;马尔可夫随机场(MRF)
中图分类号:
作者姓名:
张海涛;柴思敏
作者机构:
辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
文献出处:
引用格式:
[1]张海涛;柴思敏-.改进双分支胶囊网络的高光谱图像分类)[J].计算机科学与探索,2022(10):2405-2414
A类:
约束窗口,DuB,ConvCapsNet
B类:
胶囊网络,高光谱图像分类,分类方法,光谱信息,空间信息,双分支卷积神经网络,提取方式,分类精度,HSI,几百个,动态路由,1D,2D,向量组,行卷,卷积运算,参数量,计算复杂度,胶囊神经网络,MRF,分类任务,分类性能,马尔可夫随机场,空间区域,图像数据集,消融实验,其他方法
AB值:
0.220437
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。