首站-论文投稿智能助手
典型文献
基于稀疏化训练和聚类降低IR-Drop影响的方法
文献摘要:
忆阻器阵列(Memristor based Crossbar)在加速神经网络计算上有很好的效果.然而,忆阻器阵列会受到IR-Drop的影响,导致忆阻器阵列的计算精度下降.为此,提出一种方案来提高计算精度,该方案是基于对权值矩阵稀疏化以及对权值矩阵的行向量进行聚类实现的.该方案首先通过分析IR-Drop对忆阻器阵列的影响,根据忆阻器阵列和权值矩阵的映射关系,对权值矩阵进行稀疏化训练,将受到较大IR-Drop影响的权值置零.然后对权值矩阵的行向量进行聚类,找到近似全零行向量将其权值置零,在保证零权值不变的前提下重新训练权值矩阵,接着删除全零行向量和全零列向量降低矩阵规模.最后在IR-Drop影响下计算权值矩阵行向量的权值损失,根据损失大小降序排列行向量得到新的权值矩阵,并映射到忆阻器阵列上.实验表明,经过此方案处理后,忆阻器阵列受到的IR-Drop显著降低,有效地提高了计算精度并且降低了硬件规模.
文献关键词:
忆阻器阵列;神经网络;IR-Drop
作者姓名:
王子杰
作者机构:
合肥工业大学 计算机与信息学院,合肥230601
引用格式:
[1]王子杰-.基于稀疏化训练和聚类降低IR-Drop影响的方法)[J].智能计算机与应用,2022(11):127-133
A类:
B类:
稀疏化训练,Drop,忆阻器阵列,Memristor,Crossbar,计算精度,权值,行向量,案首,映射关系,行稀疏化,新训,删除,降序,射到,列上
AB值:
0.182797
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。