典型文献
基于深度学习的单目标跟踪算法综述
文献摘要:
单目标跟踪是计算机视觉领域中的研究热点.传统算法如相关滤波的跟踪速度较快,但由于提取到的颜色、灰度等手工特征较为粗糙,跟踪精度往往不高.近年来随着深度学习理论的发展,使用深度特征的跟踪方法能够在跟踪的精度和速度方面达到很好的平衡.本文首先介绍单目标跟踪的相关背景,接着从相关滤波单目标跟踪、深度学习单目标跟踪两个阶段对单目标跟踪领域发展过程中涌现出的多个算法进行梳理,并详细介绍目前主流的孪生网络算法.最后通过大型数据集对近年来优秀算法进行对比分析,针对其缺点与不足,对该领域未来的发展前景做出展望.
文献关键词:
计算机视觉;单目标跟踪;相关滤波;深度学习;孪生网络;注意力机制
中图分类号:
作者姓名:
王红涛;邓淼磊;赵文君;张德贤
作者机构:
河南工业大学 信息科学与工程学院, 郑州 450001
文献出处:
引用格式:
[1]王红涛;邓淼磊;赵文君;张德贤-.基于深度学习的单目标跟踪算法综述)[J].计算机系统应用,2022(05):40-51
A类:
B类:
单目标跟踪,目标跟踪算法,计算机视觉,传统算法,相关滤波,取到,灰度,手工特征,跟踪精度,深度学习理论,使用深度,深度特征,跟踪方法,面达,学习单,涌现出,孪生网络,网络算法,出展,注意力机制
AB值:
0.260407
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。