首站-论文投稿智能助手
典型文献
牛顿迭代法在高中数学中的应用
文献摘要:
1引言 高中数学中常用二分法来计算方程的近似解,计算过程简单,只要求函数连续即可,但该方法收敛速度慢,且不能求偶数重根,每一步计算的函数值只用上了他们的符号,计算的结果没有被充分的利用.有没有收敛更快的方法来求解方程的近似解呢?牛顿在《流数法》中给出了求高次代数方程近似解的数值解法:牛顿迭代法.该内容在人教A版高中数学选修2-2探究与发现板块"牛顿法—用导数方法求方程的近似解"中也有所体现,因其收敛速度较快,是一个基于用近似线性方程代替原方程的构造方法,具有一定的普遍性与通用性,因此是方程求根的一个基本方法.加之其与导数的紧密联系以及近些年来高考试题以高等数学为背景进行设计的趋势,牛顿迭代法逐渐出现在各地的高考试题中.
文献关键词:
作者姓名:
邵青;徐章韬
作者机构:
华中师范大学数学与统计学学院 430079
文献出处:
引用格式:
[1]邵青;徐章韬-.牛顿迭代法在高中数学中的应用)[J].数学通报,2022(09):60-63
A类:
B类:
牛顿迭代法,高中数学,引言,二分法,近似解,求函数,收敛速度,速度慢,求偶,偶数,数重,重根,函数值,只用,有没有,解方程,代数方程,数值解法,选修,探究与发现,牛顿法,导数,线性方程,构造方法,通用性,求根,基本方法,高考试题,高等数学
AB值:
0.364272
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。