典型文献
无人机飞行高度对冬小麦植株氮积累量预测模型的影响
文献摘要:
无人机具有快速、高效、无损获取作物信息的优势,但是飞行高度直接影响作物信息获取效率.通过设置30、60、90 m飞行高度获取冬小麦拔节期、开花期、灌浆期不同分辨率的无人机遥感影像,探索无人机飞行高度对冬小麦植株氮积累量预测模型的影响.首先将不同高度植被指数和纹理特征与冬小麦植株氮积累量进行相关性和共线性分析,筛选出6个植被指数(NDVI、RDVI、RERDVI、GBNDVI、OSAVI、EXG)和4个纹理特征(Green-mean、Green-sm、Red-mean、Red-var).基于筛选出的植被指数和纹理特征,采用偏最小二乘回归(PLSR)和BP神经网络(BPNN)法建立了植被指数、纹理特征与植被指数+纹理特征的冬小麦植株氮积累量预测模型,并将模型在不同高度进行交叉验证,采用决定系数(R2)、均方根误差(RMSE)和相对分析误差(RPD)指标对模型的稳定性进行分析.结果表明,2种方法均是30 m飞行高度遥感影像提取的植被指数、纹理特征、植被指数+纹理特征建立的预测模型稳定性最好,3种建模信息构建的模型验证时的R2、RMSE、RPD分别为0.57~0.89、1.27~4.16 g/m2、1.67~3.65.BPNN在3种建模信息下构建的模型稳定性整体优于PLSR,验证模型的R2、RPD分别提高0.01~0.39、0.05~1.44,RMSE下降0.08~8.53g/m2.3个高度植被指数、纹理特征、植被指数+纹理特征的植株氮积累量预测模型稳定性顺序:植被指数+纹理特征>植被指数>纹理特征.融合3个飞行高度遥感影像的植被指数、纹理特征、植被指数+纹理特征进行植株氮积累量预测可以提高估算精度,R2、RMSE、RPD分别为0.89~0.93、1.80~2.03g/m2、3.54~4.03.因此,在兼顾效率与精度的情况下,适当提高无人机飞行高度,综合利用植被指数和纹理特征可以对植株氮积累量达到较好的预测效果.
文献关键词:
无人机;冬小麦;飞行高度;植株氮积累量;预测模型;植被指数;纹理特征
中图分类号:
作者姓名:
井宇航;郭燕;张会芳;戎亚思;张少华;冯伟;王来刚;贺佳;刘海礁;郑国清
作者机构:
河南农业大学农学院/省部共建小麦玉米作物学国家重点实验室,河南郑州450046;河南省农业科学院农业经济与信息研究所,河南郑州450002;农作物种植监测与预警河南省工程实验室,河南郑州450002
文献出处:
引用格式:
[1]井宇航;郭燕;张会芳;戎亚思;张少华;冯伟;王来刚;贺佳;刘海礁;郑国清-.无人机飞行高度对冬小麦植株氮积累量预测模型的影响)[J].河南农业科学,2022(02):147-158
A类:
RERDVI,GBNDVI
B类:
无人机飞行,飞行高度,冬小麦,小麦植株,植株氮积累量,机具,信息获取,拔节期,开花期,灌浆期,无人机遥感影像,不同高度,植被指数,纹理特征,共线性分析,OSAVI,EXG,Green,mean,sm,Red,var,偏最小二乘回归,PLSR,BPNN,交叉验证,决定系数,RMSE,RPD,影像提取,模型稳定性,信息构建,模型验证,验证模型,53g,高估,估算精度,03g,对植
AB值:
0.194977
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。