典型文献
基于核主成分分析和AP聚类算法的电力系统态势感知技术
文献摘要:
随着可再生能源渗透水平的不断提高,现代电力系统面临着更多不可避免的不确定性,这些不确定性可能导致系统的弱阻尼振荡问题.对于可再生能源渗透率很高的电力系统,检测同步发电机之间的相干性是态势感知的关键环节.为此,文中提出了一种基于广域测量系统(Based Area Measurement System,WAMS)的相干检测算法,该方法采用了核主成分分析(Kernel Principal Component Analysis,KPCA)和聚类(Affinity Propagation,AP)分析法可应用于可再生能源广泛渗透的电力系统.文中提出了几种轨迹相似度指标,用于确定惯性中心(Center of Inertia,COI)坐标中任意两个发电机轨迹之间的相似性;提出了一种基于KPCA方法的集成轨迹相似度指标,以解决多个指标之间的相干性问题;随后采用AP聚类分析方法检测同步发电机之间的相干性,可无需预先指定聚类的数量;利用高可再生能源发电渗透率的华南电力系统和包括张北风电场的华北电力系统的一部分进行仿真分析,结果证明了所提方法的适用性和实用性.
文献关键词:
相干性检测;态势感知;广域测量系统;高可再生能源渗透;核主成分分析;AP聚类
中图分类号:
作者姓名:
王艳松;高鑫;胡彩娥;王健;张禄
作者机构:
国网北京市电力公司,北京100075
文献出处:
引用格式:
[1]王艳松;高鑫;胡彩娥;王健;张禄-.基于核主成分分析和AP聚类算法的电力系统态势感知技术)[J].电测与仪表,2022(01):25-36
A类:
相干性检测,高可再生能源渗透
B类:
核主成分分析,AP,聚类算法,态势感知技术,渗透水平,现代电力系统,导致系统,弱阻尼,阻尼振荡,可再生能源渗透率,同步发电机,广域测量系统,Based,Area,Measurement,System,WAMS,相干检测,检测算法,Kernel,Principal,Component,Analysis,KPCA,Affinity,Propagation,轨迹相似度,相似度指标,Center,Inertia,COI,聚类分析方法,可无,预先指定,定聚,可再生能源发电,电渗透,华南,张北,北风,风电场,华北电力
AB值:
0.330455
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。