首站-论文投稿智能助手
典型文献
利用条件生成对抗网络的光场图像重聚焦
文献摘要:
目的 传统的基于子视点叠加的重聚焦算法混叠现象严重,基于光场图像重构的重聚焦方法计算量太大,性能提升困难.为此,本文借助深度神经网络设计和实现了一种基于条件生成对抗网络的新颖高效的端到端光场图像重聚焦算法.方法 首先以光场图像为输入计算视差图,并从视差图中计算出所需的弥散圆(circle of confu-sion,COC)图像,然后根据COC图像对光场中心子视点图像进行散焦渲染,最终生成对焦平面和景深与COC图像相对应的重聚焦图像.结果 所提算法在提出的仿真数据集和真实数据集上与相关算法进行评价比较,证明了所提算法能够生成高质量的重聚焦图像.使用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)进行定量分析的结果显示,本文算法比传统重聚焦算法平均PSNR提升了1.82 dB,平均SSIM提升了0.02,比同样使用COC图像并借助各向异性滤波的算法平均PSNR提升了7.92 dB,平均SSIM提升了0.08.结论 本文算法能够依据图像重聚焦和景深控制要求,生成输入光场图像的视差图,进而生成对应的COC图像.所提条件生成对抗神经网络模型能够依据得到的不同COC图像对输入的中心子视点进行散焦渲染,得到与之对应的重聚焦图像,与之前的算法相比,本文算法解决了混叠问题,优化了散焦效果,并显著降低了计算成本.
文献关键词:
光场;图像重聚焦;条件生成对抗网络;弥散圆(COC);散焦渲染
作者姓名:
谢柠宇;丁宇阳;李明悦;刘渊;律睿慜;晏涛
作者机构:
江南大学人工智能与计算机学院,无锡 214122
引用格式:
[1]谢柠宇;丁宇阳;李明悦;刘渊;律睿慜;晏涛-.利用条件生成对抗网络的光场图像重聚焦)[J].中国图象图形学报,2022(04):1056-1065
A类:
图像重聚焦,confu,散焦渲染
B类:
条件生成对抗网络,光场图像,视点,聚焦算法,图像重构,计算量,太大,性能提升,深度神经网络,网络设计,设计和实现,端到端,先以,视差图,中计,弥散,circle,sion,COC,心子,终生,对焦,焦平面,景深,仿真数据,真实数据,峰值信噪比,peak,signal,noise,ratio,PSNR,结构相似性,structural,similarity,SSIM,dB,各向异性,提条件,生成对抗神经网络,计算成本
AB值:
0.238353
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。