首站-论文投稿智能助手
典型文献
Reassessment of fenestration characteristics for residential buildings in hot climates:energy and economic analysis
文献摘要:
This paper attempts to resolve the reported contradiction in the literature about the characteristics of high-performance/cost-effective fenestration of residential buildings,particularly in hot climates.The considered issues are the window glazing property(ten commercial glazing types),facade orientation(four main orientations),window-to-wall ratio(WWR)(0.2-0.8),and solar shading overhangs and side-fins(nine shading conditions).The results of the simulated runs reveal that the glazing quality has a superior effect over the other fenestration parameters and controls their effect on the energy consumption of residential buildings.Thus,using low-performance win-dows on buildings yields larger effects of WWR,facade orientation,and solar shading than high-performance windows.As the WWR increases from 0.2 to 0.8,the building energy consumption using the low-performance window increases 6.46 times than that using the high-performance window.The best facade orientation is changed from north to south according to the glazing properties.In addition,the solar shading need is correlated as a function of a window-glazing property and WWR.The cost analysis shows that the high-performance windows without solar shading are cost-effective as they have the largest net present cost compared to low-performance windows with or without solar shading.Accordingly,replacing low-performance windows with high-performance ones,in an existing residential building,saves about 12.7 MWh of electricity and 11.05 tons of CO2 annually.
文献关键词:
作者姓名:
Ali ALAJMI;Hosny ABOU-ZIYAN;Hamad H.Al-MUTAIRI
作者机构:
Mechanical Engineering Department,College of Technological Studies,PAAET,Kuwait;Mechanical Power Engineering Department,Faculty of Engineering,Helwan University,Cairo,Egypt
文献出处:
引用格式:
[1]Ali ALAJMI;Hosny ABOU-ZIYAN;Hamad H.Al-MUTAIRI-.Reassessment of fenestration characteristics for residential buildings in hot climates:energy and economic analysis)[J].能源前沿,2022(04):629-650
A类:
Reassessment,glazing,facade,WWR,overhangs
B类:
fenestration,characteristics,residential,buildings,hot,climates,energy,economic,analysis,This,paper,attempts,resolve,reported,contradiction,literature,about,high,performance,cost,effective,particularly,considered,issues,property,ten,commercial,types,four,main,orientations,wall,solar,shading,fins,nine,conditions,results,simulated,runs,reveal,that,quality,has,superior,other,parameters,controls,their,consumption,Thus,using,low,yields,larger,effects,than,windows,increases,from,times,best,changed,north,south,according,properties,In,addition,need,correlated,function,shows,without,they,have,largest,net,present,compared,Accordingly,replacing,ones,existing,saves,MWh,electricity,tons,annually
AB值:
0.401552
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
MXene-wrapped ZnCo2S4 core-shell nanospheres via electrostatic self-assembly as positive electrode materials for asymmetric supercapacitors
Ji-Qiu Qi;Chen-Chen Zhang;Hao Liu;Lei Zhu;Yan-Wei Sui;Xiu-Juan Feng;Wen-Qing Wei;Hao Zhang;Peng Cao-Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments,School of Materials Science and Physics,China University of Mining and Technology,Xuzhou 221116,China;The School of Mines,China University of Mining and Technology,Xuzhou 221116,China;School of Mechanical-Electronic and Vehicle Engineering,Weifang University,Weifang 261061,China;Ningbo Institute of Materials Technology&Engineering,Chinese Academy of Sciences,Ningbo 315201,China;Department of Chemical&Materials Engineering,University of Auckland,Auckland 1142,New Zealand
Low-cost polymer acceptors with noncovalently fused-ring backbones for efficient all-polymer solar cells
Xiaobin Gu;Yanan Wei;Xingzheng Liu;Na Yu;Laiyang Li;Ziyang Han;Jinhua Gao;Congqi Li;Zhixiang Wei;Zheng Tang;Xin Zhang;Hui Huang-College of Materials Science and Opto-Electronic Technology,Center of Materials Science and Optoelectronics Engineering,CAS Center for Excellence in Topological Quantum Computation,CAS Key Laboratory of Vacuum Physics,University of Chinese Academy of Sciences,Beijing 100049,China;Center for Advanced Low-dimension Materials,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China;CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。