典型文献
Fractional Fourier transform on R2 and an application
文献摘要:
We focus on the Lp(R2)theory of the fractional Fourier transform(FRFT)for 1≤p≤2.In L1(R2),we mainly study the properties of the FRFT via introducing the two-parameter chirp operator.In order to get the point-wise convergence for the inverse FRFT,we introduce the fractional convolution and establish the corresponding approximate identities.Then the well-defined inverse FRFT is given via approximation by suitable means,such as fractional Gauss means and Able means.Furthermore,if the signal Fα,βf is received,we give the process of recovering the original signal f with MATLAB.In L2(R2),the general Plancherel theorem,direct sum decomposition,and the general Heisenberg inequality for the FRFT are obtained.
文献关键词:
中图分类号:
作者姓名:
Yue ZHANG;Wenjuan LI
作者机构:
School of Mathematics and Statistics,Northwestern Polytechnical University,Xi'an 710072,China
文献出处:
引用格式:
[1]Yue ZHANG;Wenjuan LI-.Fractional Fourier transform on R2 and an application)[J].中国数学前沿,2022(06):1181-1200
A类:
Plancherel
B类:
Fractional,Fourier,transform,application,We,focus,Lp,theory,fractional,FRFT,In,L1,mainly,study,properties,via,introducing,two,parameter,chirp,operator,order,get,point,wise,convergence,inverse,introduce,convolution,establish,corresponding,approximate,identities,Then,well,defined,given,approximation,by,suitable,means,such,as,Gauss,Able,Furthermore,if,signal,received,process,recovering,original,L2,general,theorem,direct,sum,decomposition,Heisenberg,inequality,are,obtained
AB值:
0.601135
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。