典型文献
A hybrid deep learning model for robust prediction of the dimensional accuracy in precision milling of thin-walled structural components
文献摘要:
The use of artificial intelligence to process sensor data and predict the dimensional accuracy of machined parts is of great interest to the manufacturing community and can facilitate the intelligent production of many key engineering components.In this study,we develop a predictive model of the dimensional accuracy for precision milling of thin-walled structural components.The aim is to classify three typical features of a structural component—squares,slots,and holes—into various categories based on their dimensional errors(i.e.,"high precision,""pass,"and"unqualified").Two different types of classification schemes have been considered in this study:those that perform feature extraction by using the convolutional neural networks and those based on an explicit feature extraction procedure.The classification accuracy of the popular machine learning methods has been evaluated in comparison with the proposed deep learning model.Based on the experimental data collected during the milling experiments,the proposed model proved to be capable of predicting dimensional accuracy using cutting parameters(i.e.,"static features")and cutting-force data(i.e.,"dynamic features").The average classification accuracy obtained using the proposed deep learning model was 9.55%higher than the best machine learning algorithm considered in this paper.Moreover,the robustness of the hybrid model has been studied by considering the white Gaussian and coherent noises.Hence,the proposed hybrid model provides an efficient way of fusing different sources of process data and can be adopted for prediction of the machining quality in noisy environments.
文献关键词:
中图分类号:
作者姓名:
Long BAI;Fei XU;Xiao CHEN;Xin SU;Fuyao LAI;Jianfeng XU
作者机构:
State Key Laboratory of Digital Manufacturing Equipment and Technology,School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Southwest Institution of Electronic Technology,Chengdu 610036,China
文献出处:
引用格式:
[1]Long BAI;Fei XU;Xiao CHEN;Xin SU;Fuyao LAI;Jianfeng XU-.A hybrid deep learning model for robust prediction of the dimensional accuracy in precision milling of thin-walled structural components)[J].机械工程前沿,2022(03):189-202
A类:
unqualified
B类:
hybrid,deep,learning,model,prediction,dimensional,accuracy,precision,milling,thin,walled,structural,components,use,artificial,intelligence,process,sensor,data,machined,parts,great,interest,manufacturing,community,can,facilitate,intelligent,production,many,key,engineering,In,this,study,we,develop,predictive,aim,classify,three,typical,features,squares,slots,holes,into,various,categories,their,errors,pass,Two,different,types,classification,schemes,have,been,considered,those,that,perform,extraction,by,convolutional,neural,networks,explicit,procedure,popular,methods,has,evaluated,comparison,proposed,Based,experimental,collected,during,experiments,proved,capable,predicting,cutting,parameters,static,force,dynamic,average,obtained,was,higher,than,best,algorithm,paper,Moreover,robustness,studied,considering,white,Gaussian,coherent,noises,Hence,provides,efficient,way,fusing,sources,adopted,machining,quality,noisy,environments
AB值:
0.542079
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。