首站-论文投稿智能助手
典型文献
基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测
文献摘要:
针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法.首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状态观测数据的潜在特征,然后将以序列方式构造的具有时空关系的特征向量作为BiLSTM网络的输入数据,最后利用车辆运行数据对所构建的1DCNN-BiLSTM模型进行训练,形成期望的输入输出映射关系,从而预测车辆的行驶轨迹.试验结果表明,1DCNN-BiLSTM相比传统方法能更加准确有效地处理序列数据,对车辆运行轨迹预测的效果也具有较高的鲁棒性.
文献关键词:
观测数据;卷积神经网络;双向长短期记忆;时空关系;轨迹预测
作者姓名:
郭应时;张瑞宾;陈元华;李天明;蒋春燕
作者机构:
长安大学,西安 710064;桂林航天工业学院,桂林 541004
文献出处:
引用格式:
[1]郭应时;张瑞宾;陈元华;李天明;蒋春燕-.基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测)[J].汽车技术,2022(03):21-27
A类:
B类:
观测数据,潜在特征,双向长短期记忆网络,车辆轨迹预测,传统算法,交通场景,无人驾驶车辆,BiLSTM,一维卷积神经网络,1DCNN,车辆运行状态,状态观测,时空关系,特征向量,输入数据,用车,运行数据,形成期,输入输出,映射关系,行驶轨迹,确有,序列数据,运行轨迹
AB值:
0.25129
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。