首站-论文投稿智能助手
典型文献
Fisher Information in Moving Extreme Ranked Set Sampling with Application to Parameter Estimation
文献摘要:
In statistical parameter estimation problems,how well the parameters are estimated largely depends on the sampling design used.In the current paper,a modification of ranked set sampling called moving extremes ranked set sampling (MERSS) is considered for the Fisher information matrix for the location-scale family.The Fisher information matrix for this model are respectively derived under simple random sampling and MERSS.In order to give more insight into the performance of MERSS with respect to simple random sampling,the Fisher information matrix for usual location-scale distributions are respectively computed under the two sampling.The numerical results show that MERSS provides more information than simple random sampling in parametric inference.
文献关键词:
作者姓名:
YAO Dongsen;CHEN Wangxue;YANG Rui;LONG Chunxian
作者机构:
Department of Mathematics and Statistics,Jishou University,Jishou 416000,China
引用格式:
[1]YAO Dongsen;CHEN Wangxue;YANG Rui;LONG Chunxian-.Fisher Information in Moving Extreme Ranked Set Sampling with Application to Parameter Estimation)[J].系统科学与复杂性学报(英文版),2022(01):361-372
A类:
Ranked,MERSS
B类:
Fisher,Information,Moving,Extreme,Set,Sampling,Application,Parameter,Estimation,statistical,estimation,problems,well,parameters,are,estimated,largely,depends,sampling,design,used,current,paper,modification,ranked,set,called,moving,extremes,considered,information,matrix,location,scale,family,this,model,respectively,derived,under,simple,random,order,give,more,insight,into,performance,usual,distributions,computed,two,numerical,results,show,that,provides,than,parametric,inference
AB值:
0.524181
相似文献
Dynamic State Estimation for Integrated Electricity-gas Systems Based on Kalman Filter
Yanbo Chen;Yuan Yao;Yuzhang Lin;Xiaonan Yang-State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,School of Electrical & Electronic Engineering,North China Electric Power University,102206 Beijing,China,Qinghai Key Laboratory of Efficient Utilization of Clean Energy,Tus-Institute for Renewable Energy,Qinghai University,Xining 810016,China,and School of Engineering,Xining University,Xining 810016,China;School of Electrical & Electronic Engineering,North China Electric Power University,102206 Beijing,China;Department of Electrical and Computer Engineering,Uni-versity of Massachusetts,Lowell,MA 01852,USA;State Key Laboratory of Power Grid Safety and Energy Conservation,China Electric Power Research Institute,100192 Beijing,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。