首站-论文投稿智能助手
典型文献
A techno-economic and life cycle assessment for the production of green methanol from CO2:catalyst and process bottlenecks
文献摘要:
The success of catalytic schemes for the large-scale valorization of CO2 does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we present a multidisciplinary study(from catalyst to plant and techno-economic/lifecycle analysis)for the production of green methanol from renewable H2 and CO2.We combine an in-depth kinetic anal-ysis of one of the most promising recently reported methanol-synthesis catalysts(InCo)with a thorough process simulation and techno-economic assessment.We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO2.Our results indicate that up to 1.75 ton of CO2 can be abated per ton of produced methanol only if renew-able energy is used to run the process,while the sensitivity analysis suggest that either rock-bottom H2 prices(1.5 $ kg-1)or severe CO2 taxation(300 $ per ton)are needed for a profitable methanol plant.Besides,we herein highlight and analyze some critical bottlenecks of the process.Especial attention has been paid to the contribution of H2 to the overall plant costs,CH4 trace formation,and purity and costs of raw gases.In addition to providing important information for policy makers and industrialists,directions for catalyst(and therefore process)improvements are outlined.
文献关键词:
作者姓名:
Tomas Cordero-Lanzac;Adrian Ramirez;Alberto Navajas;Lieven Gevers;Sirio Brunialti;Luis M.Gandía;Andrés T.Aguayo;S.Mani Sarathy;Jorge Gascon
作者机构:
Department of Chemical Engineering,University of the Basque Country(UPV/EHU),PO Box 644,48080 Bilbao,Spain;Centre for Materials Science and Nanotechnology(SMN),Department of Chemistry,University of Oslo,N-0315 Oslo,Norway;King Abdullah University of Science and Technology,KAUST Catalysis Center(KCC),Advanced Catalytic Materials,Thuwal 23955,Saudi Arabia;Department of Science,Public University of Navarre(UPNA),Arrosadía Campus s/n,31006 Pamplona,Spain;Institute for Advanced Materials and Mathematics(InaMat2),Universidad Publica de Navarra(UPNA),Edificio Jerónimo de Ayanz,Campus de Arrosadia,Pamplona-Iru?a 31006,Spain;King Abdullah University of Science and Technology,Clean Combustion Research Center(CCRC),Thuwal 23955,Saudi Arabia
文献出处:
引用格式:
[1]Tomas Cordero-Lanzac;Adrian Ramirez;Alberto Navajas;Lieven Gevers;Sirio Brunialti;Luis M.Gandía;Andrés T.Aguayo;S.Mani Sarathy;Jorge Gascon-.A techno-economic and life cycle assessment for the production of green methanol from CO2:catalyst and process bottlenecks)[J].能源化学,2022(05):255-266
A类:
InCo,abated,Especial,industrialists
B类:
techno,economic,assessment,production,green,methanol,from,process,bottlenecks,success,catalytic,schemes,large,scale,valorization,does,not,only,depend,development,active,selective,stable,materials,also,overall,design,Here,we,present,multidisciplinary,study,plant,lifecycle,analysis,renewable,H2,We,combine,depth,kinetic,one,most,promising,recently,reported,synthesis,catalysts,thorough,simulation,then,perform,simulated,gauge,real,environmental,impact,Our,results,indicate,that,up,ton,can,produced,energy,used,run,while,sensitivity,suggest,either,rock,bottom,prices,severe,taxation,are,needed,profitable,Besides,herein,highlight,analyze,some,critical,attention,has,been,paid,contribution,costs,CH4,trace,purity,raw,gases,addition,providing,important,information,policy,makers,directions,therefore,improvements,outlined
AB值:
0.530003
相似文献
Techno-economic characteristics of wastewater treatment plants retrofitted from the conventional activated sludge process to the membrane bioreactor process
Tingwei Gao;Kang Xiao;Jiao Zhang;Wenchao Xue;Chunhai Wei;Xiaoping Zhang;Shuai Liang;Xiaomao Wang;Xia Huang-College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 101408,China;Yanshan Earth Critical Zone and Surface Fluxes Research Station,University of Chinese Academy of Sciences,Beijing 101408,China;State Key Joint Laboratory of Environment Simulation and Pollution Control,School of Environment,Tsinghua University,Beijing 100084,China;Department of Energy,Environment and Climate Change,School of Environment,Resources and Development,Asian Institute of Technology,Klong Luang,Pathumthani 12120,Thailand;School of Civil Engineering,Guangzhou University,Guangzhou 510006,China;College of Environmental Science and Engineering,Beijing Forestry University,Beijing 100083,China;Research and Application Center for Membrane Technology,School of Environment,Tsinghua University,Beijing 100084,China
City-level emission peak and drivers in China
Yuli Shan;Yuru Guan;Ye Hang;Heran Zheng;Yanxian Li;Dabo Guan;Jiashuo Li;Ya Zhou;Li Li;Klaus Hubacek-School of Geography,Earth and Environmental Sciences,University of Birmingham,Birmingham B15 2TT,UK;Integrated Research on Energy,Environment and Society,Energy and Sustainability Research Institute Groningen,University of Groningen,Groningen 9747 AG,Netherlands;College of Economics and Management&Research Centre for Soft Energy Science,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;The Bartlett School of Sustainable Construction,University College London,London WC1E 6BT,UK;Industrial Ecology Programme,Norwegian University of Science and Technology,Trondheim 7491,Norway;Department of Earth System Science,Tsinghua University,Beijing 100871,China;Institute of Blue and Green Development,Shandong University,Weihai 264209,China;Key Laboratory of City Cluster Environmental Safety and Green Development,Ministry of Education,School of Ecology,Environment and Resources,Guangdong University of Technology,Guangzhou 510006,China;School of Economics and Management,China University of Geosciences,Beijing 100083,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。