首站-论文投稿智能助手
典型文献
A DISCRETIZING LEVENBERG-MARQUARDT SCHEME FOR SOLVING NONLIEAR ILL-POSED INTEGRAL EQUATIONS
文献摘要:
To reduce the computational cost,we propose a regularizing modified Levenberg-Marquardt scheme via multiscale Galerkin method for solving nonlinear ill-posed prob-lems.Convergence results for the regularizing modified Levenberg-Marquardt scheme for the solution of nonlinear ill-posed problems have been proved.Based on these results,we propose a modified heuristic parameter choice rule to terminate the regularizing modified Levenberg-Marquardt scheme.By imposing certain conditions on the noise,we derive optimal convergence rates on the approximate solution under special source conditions.Numerical results are presented to illustrate the performance of the regularizing modified Levenberg-Marquardt scheme under the modified heuristic parameter choice.
文献关键词:
作者姓名:
Rong Zhang;Hongqi Yang
作者机构:
School of Mathematics and Computer Science,Gannan Normal University,Ganzhou 341004,China;Guangdong Province Key Laboratory of Computational Science,School of Computer Science and Engineering,Sun Yat-sen University,Guangzhou 510275,China
引用格式:
[1]Rong Zhang;Hongqi Yang-.A DISCRETIZING LEVENBERG-MARQUARDT SCHEME FOR SOLVING NONLIEAR ILL-POSED INTEGRAL EQUATIONS)[J].计算数学(英文版),2022(05):686-710
A类:
DISCRETIZING,LEVENBERG,MARQUARDT,SCHEME,SOLVING,NONLIEAR,POSED,INTEGRAL,EQUATIONS
B类:
FOR,ILL,To,reduce,computational,cost,we,propose,regularizing,modified,Levenberg,Marquardt,scheme,via,multiscale,Galerkin,method,solving,nonlinear,posed,Convergence,results,solution,problems,have,been,proved,Based,these,heuristic,parameter,choice,rule,terminate,By,imposing,certain,conditions,noise,derive,optimal,convergence,rates,approximate,under,special,source,Numerical,are,presented,illustrate,performance
AB值:
0.449906
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。