典型文献
融合时间特性和用户偏好的卷积序列化推荐
文献摘要:
推荐系统如今已被广泛应用于生活中,大大便利了人们的生活.传统的推荐方法主要是针对用户与物品的交互情况进行分析,分析用户与物品的历史记录,得到的只是用户过去对于物品的喜好程度.序列化推荐系统通过分析用户近一段时间与物品交互的序列,来考虑用户前后行为的关联性,能够获得用户短期内对物品的喜好程度.然而,序列化方法强调的是用户与物品在短期的联系,忽视了物品属性之间存在的关系.针对以上问题,文中提出了融合时间特性和用户偏好的卷积序列化推荐(Convolutional Embedding Recommendation with Time and User Preference,CERTU)模型.该模型能够分析物品之间存在的多样性关系,从而捕获用户对物品随时间变化的动态喜好程度这一特性.除此之外,该模型进一步考虑了物品序列中存在的单个物品和多个物品对下一物品推荐的影响.实验结果表明,CERTU模型的性能优于当前的基线方法.
文献关键词:
推荐系统;卷积神经网络;序列化推荐;用户兴趣;时间特性
中图分类号:
作者姓名:
陈晋鹏;胡哈蕾;张帆;曹源;孙鹏飞
作者机构:
北京邮电大学计算机学院(国家示范性软件学院) 北京 100876
文献出处:
引用格式:
[1]陈晋鹏;胡哈蕾;张帆;曹源;孙鹏飞-.融合时间特性和用户偏好的卷积序列化推荐)[J].计算机科学,2022(01):115-120
A类:
序列化推荐系统,CERTU
B类:
时间特性,用户偏好,大便,推荐方法,历史记录,喜好,统通,后行,得用,存在的关系,Convolutional,Embedding,Recommendation,Time,User,Preference,除此之外,一物,用户兴趣
AB值:
0.248919
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。