首站-论文投稿智能助手
典型文献
PAM-Expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G Base Editors for Programmable Base Editing in Mycobacteria
文献摘要:
New therapeutic strategies for the rapid and effective treatment of drug-resistant tuberculosis are highly desirable,and their development can be drastically accelerated by facile genetic manipulation methods in Mycobacterium tuberculosis(M.tuberculosis).Clustered regularly interspaced short palindromic repeat(CRISPR)base editors allow for rapid,robust,and programmed single-base substitutions and gene inac-tivation,yet no such systems are currently available in M.tuberculosis.By screening distinct CRISPR base editors,we discovered that only the unusual Streptococcus thermophilus CRISPR associated protein 9(St1Cas9)cytosine base editor(CBE)-but not the widely used Streptococcus pyogenes Cas9(SpCas9)or Lachnospiraceae bacterium Cpf1(LbCpf1)CBEs-is active in mycobacteria.Despite the notable C-to-T con-versions,a high proportion of undesired byproducts exists with St1Cas9 CBE.We therefore engineered St1Cas9 CBE by means of uracil DNA glycosylase inhibitor(UGI)or uracil DNA glycosylase(UNG)fusion,yielding two new base editors(CTBE and CGBE)capable of C-to-T or C-to-G conversions with dramatically enhanced editing product purity and multiplexed editing capacity in Mycobacterium smegmatis(M.smeg-matis).Because wild-type St1Cas9 recognizes a relatively strict protospacer adjacent motif(PAM)sequence for DNA targeting,we engineered a PAM-expanded St1Cas9 variant by means of structure-guided protein engineering for the base editors,substantially broadening the targeting scope.We first developed and characterized CTBE and CGBE in M.smegmatis,and then applied CTBE for genome editing in M.tuberculosis.Our approaches significantly reduce the efforts and time needed for precise genetic manipulation and will facilitate functional genomics,antibiotic-resistant mechanism study,and drug-target exploration in M.tuberculosis and related organisms.
文献关键词:
作者姓名:
Hongyuan Zhang;Yifei Zhang;Wei-Xiao Wang;Weizhong Chen;Xia Zhang;Xingxu Huang;Wei Chen;Quanjiang Ji
作者机构:
School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 100049,China;Clinical Research Center,the Second Hospital of Nanjing,Nanjing University of Chinese Medicine,Nanjing 210003,China;Department of Tuberculosis,the Second Hospital of Nanjing,Nanjing University of Chinese Medicine,Nanjing 210003,China;Gene Editing Center,School of Life Science and Technology,ShanghaiTech University,Shanghai 201210,China;Guangzhou Laboratory,Guangzhou 510120,China
文献出处:
引用格式:
[1]Hongyuan Zhang;Yifei Zhang;Wei-Xiao Wang;Weizhong Chen;Xia Zhang;Xingxu Huang;Wei Chen;Quanjiang Ji-.PAM-Expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G Base Editors for Programmable Base Editing in Mycobacteria)[J].工程(英文),2022(08):67-77
A类:
Mycobacteria,St1Cas9,LbCpf1,CBEs,CTBE,CGBE
B类:
PAM,Expanded,Streptococcus,thermophilus,Base,Editors,Programmable,Editing,New,therapeutic,strategies,rapid,effective,treatment,drug,resistant,tuberculosis,are,highly,desirable,their,development,drastically,accelerated,facile,genetic,manipulation,methods,Mycobacterium,Clustered,regularly,interspaced,short,palindromic,repeat,CRISPR,base,editors,allow,robust,programmed,single,substitutions,inac,tivation,yet,such,systems,currently,available,By,screening,distinct,we,discovered,that,only,unusual,associated,protein,cytosine,but,widely,used,pyogenes,SpCas9,Lachnospiraceae,active,mycobacteria,Despite,notable,proportion,undesired,byproducts,exists,We,therefore,engineered,means,uracil,glycosylase,inhibitor,UGI,UNG,fusion,yielding,two,new,capable,conversions,dramatically,enhanced,editing,purity,multiplexed,capacity,smegmatis,Because,wild,type,recognizes,relatively,strict,protospacer,adjacent,motif,sequence,targeting,expanded,variant,structure,guided,engineering,substantially,broadening,scope,first,developed,characterized,then,applied,genome,Our,approaches,significantly,reduce,efforts,needed,precise,will,facilitate,functional,genomics,antibiotic,mechanism,study,exploration,related,organisms
AB值:
0.553774
相似文献
CRISPR-Cas12a-Empowered Electrochemical Biosensor for Rapid and Ultrasensitive Detection of SARS-CoV-2 Delta Variant
Chenshuo Wu;Zhi Chen;Chaozhou Li;Yabin Hao;Yuxuan Tang;Yuxuan Yuan;Luxiao Chai;Taojian Fan;Jiangtian Yu;Xiaopeng Ma;Omar A.Al-Hartomy;S.Wageh;Abdullah G.Al-Sehemi;Zhiguang Luo;Yaqing He;Jingfeng Li;Zhongjian Xie;Han Zhang-International Collaborative Laboratory of 2D,Materials for Optoelectronics Science and Technology of Ministry of Education,Institute of Microscale Optoelectronics,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,People's Republic of China;Hospital of Guangzhou Medical University,Qingyuan city People's Hospital,Qingyuan 511518,People's Republic of China;Shenzhen Han's Tech Limited Company,Shenzhen 518000,People's Republic of China;Shenzhen International Institute for Biomedical Research,Shenzhen 518116,People's Republic of China;Department of Respiratory,Shenzhen Children's Hospital,Shenzhen 518038,People's Republic of China;Department of Physics,Faculty of Science,King Abdulaziz University,Jeddah 21589,Saudi Arabia;Research Center for Advanced Materials Science(RCAMS),King Khalid University,P.O.Box 9004,Abha 61413,Saudi Arabia;Department of Chemistry,College of Science,King Khalid University,P.O.Box 9004,Abha 61413,Saudi Arabia;Zhongmin(Shenzhen)Intelligent Ecology Co.,Ltd,Shenzhen 518055,People's Republic of China;Shenzhen Center for Disease Control and Prevention,Shenzhen 518055,People's Republic of China;Institute of Pediatrics,Shenzhen Children's Hospital,Shenzhen 518038,People's Republic of China
The putative NAD(P)H Nitroreductase, Rv3131, is the Probable Activating Enzyme for Metronidazole in Mycobacterium Tuberculosis
DONG Wen Zhu;SHI Jin;CHU Ping;LIU Rong Mei;WEN Shu An;ZHANG Ting Ting;PANG Yu;LU Jie-Department of Infectious Diseases,The First People's Hospital of Ziyang,Ziyang 641300,Sichuan,China;Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute,Beijing 101149,China;Department of Tuberculosis,Beijing Chest Hospital,Capital Medical University,Beijing 101149,China;Beijing Key Laboratory for Pediatric Diseases of Otolaryngology,Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital,Capital Medical University, National Center for Children's Health, Beijing 101149, China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。