首站-论文投稿智能助手
典型文献
Banach空间中带有Sturm-Liouville边界条件的分数阶微分方程解的存在性
文献摘要:
抽象空间微分方程的难点在于积分算子不再具有紧性,为了对相应的算子应用凝聚映射的不动点理论,通常要给非线性项添加非紧性条件.本文运用非紧性测度估计技巧、Sadovskii's不动点定理和凝聚映射的Leray-Schauder不动点定理,研究了Banach空间中带有Sturm-Liouville边界条件的分数阶微分方程解的存在性,并举例说明所得结果的适用性.
文献关键词:
一致分数阶导数;非紧性测度;Sadovskii’s不动点定理;Leray-Schauder不动点定理
作者姓名:
宋学瑶;周文学;吴亚斌
作者机构:
兰州交通大学数理学院,甘肃 兰州730070
引用格式:
[1]宋学瑶;周文学;吴亚斌-.Banach空间中带有Sturm-Liouville边界条件的分数阶微分方程解的存在性)[J].武汉大学学报(理学版),2022(05):501-508
A类:
凝聚映射,Sadovskii
B类:
Banach,Sturm,Liouville,分数阶微分方程,方程解,解的存在性,抽象空间,积分算子,非线性项,非紧性测度,不动点定理,Leray,Schauder,举例说明,一致分数阶导数
AB值:
0.225554
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。