首站-论文投稿智能助手
典型文献
Functionalized gadofullerene ameliorates impaired glycolipid metabolism in type 2 diabetic mice
文献摘要:
The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety.Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application.In the present study,we investigated the anti-diabetic effects of a functionalized gadofullerene(GF)using obese db/db and non-obese mouse model of type 2 diabete mellitus(MKR)mouse type 2 dia-betes mellitus(T2DM)models.In both mouse models,the diabetic phenotypes,including hyperglycemia,impaired glucose tolerance,and insulin sensitivity,were ameliorated after two or four weeks of intraperitoneal administration of GF.GF lowered blood glucose levels in a dose-dependent manner.Importantly,the restored blood glucose levels could persist ten days after withdrawal of GF treatment.The hepatic AKT/GSK3β/FoxO1 pathway is shown to be the main target of GF for rebalancing gluconeogenesis and glycogen synthesis in vivo and in vitro.Furthermore,GF treatment significantly reduced weight gain of db/db mice with reduced hepatic fat storage by the inhibition of de novo lipogenesis through mTOR/S6K/SREBP1 pathway.Our data provide compelling evidence to support the promising application of GF for the treatment of T2DM.
文献关键词:
作者姓名:
Jin Wu;Yingbo Chen;Xue Li;Liyuan Ran;Xiangdong Liu;Xiaoshuang Wang;Mingming Zhen;Shanshan Shao;Li Zeng;Chunru Wang;Bin Liang;Jiajun Zhao;Yingjie Wu
作者机构:
Shandong Provincial Hospital,Shandong Laboratory Animal Center,Science and Technology Innovation Center,Shandong First Medical University&Shandong Academy of Medical Sciences,Jinan,Shandong 250021,China;Institute for Genome Engineered Animal Models of Human Diseases,Dalian Medical University,Dalian,Liaoning 116044,China;Beijing National Laboratory for Molecular Sciences,Key Laboratory of Molecular Nanostructure and Nanotechnology,CAS Research/Education Center for Excellence in Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China;Center for Life Sciences,School of Life Sciences,Yunnan University,Kunming,Yunnan 650091,China;Department of Molecular Pathobiology,New York University College of Dentistry,New York 10010,USA
文献出处:
引用格式:
[1]Jin Wu;Yingbo Chen;Xue Li;Liyuan Ran;Xiangdong Liu;Xiaoshuang Wang;Mingming Zhen;Shanshan Shao;Li Zeng;Chunru Wang;Bin Liang;Jiajun Zhao;Yingjie Wu-.Functionalized gadofullerene ameliorates impaired glycolipid metabolism in type 2 diabetic mice)[J].遗传学报,2022(04):364-376
A类:
gadofullerene,Nanomaterial,diabete
B类:
Functionalized,ameliorates,impaired,glycolipid,metabolism,diabetic,mice,soaring,global,prevalence,diabetes,makes,urgent,explore,new,drugs,high,efficacy,safety,derived,bioactive,agents,are,emerging,as,most,promising,candidates,biomedical,application,In,present,study,investigated,anti,effects,functionalized,GF,using,obese,db,mouse,mellitus,MKR,T2DM,models,both,phenotypes,including,hyperglycemia,glucose,tolerance,insulin,sensitivity,ameliorated,after,two,four,weeks,intraperitoneal,administration,lowered,blood,levels,dose,dependent,manner,Importantly,restored,could,persist,ten,days,withdrawal,treatment,hepatic,AKT,GSK3,FoxO1,pathway,shown,main,target,rebalancing,gluconeogenesis,glycogen,synthesis,vivo,vitro,Furthermore,significantly,reduced,weight,gain,fat,storage,by,inhibition,novo,lipogenesis,through,mTOR,S6K,SREBP1,Our,data,provide,compelling,evidence,support
AB值:
0.629718
相似文献
Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis
Kai Jiang;Yue Xu;Dandan Wang;Feng Chen;Zizhuo Tu;Jie Qian;Sheng Xu;Yixiang Xu;John Hwa;Jian Li;Hongcai Shang;Yaozu Xiang-Shanghai East Hospital,School of Life Sciences and Technology,Tongji University,Shanghai 200092,China;State Key Laboratory of Bioreactor Engineering,Shanghai Key Laboratory of New Drug Design,East China University of Science and Technology,Shanghai 200237,China;Section of Cardiovascular Medicine,Department of Internal Medicine,Yale Cardiovascular Research Center,Yale University School of Medicine,New Haven,CT 06511,USA;Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing,Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine,Beijing 100700,China
Asiatic acid alleviates ischemic myocardial injury in mice by modulating mitophagy-and glycophagy-based energy metabolism
Fan Qiu;Yi Yuan;Wei Luo;Yan-shan Gong;Zhong-ming Zhang;Zhong-min Liu;Ling Gao-Translational Medical Center for Stem Cell Therapy&Institute for Regenerative Medicine,Shanghai East Hospital,Tongji University School of Medicine,Shanghai 200123,China;Department of Cardiovascular and Thoracic Surgery,Shanghai East Hospital,Tongji University School of Medicine,Shanghai 200120,China;Department of Cardiovascular and Thoracic Surgery,Affiliated Hospital of Xuzhou Medical University,Xuzhou 221006,China;Shanghai Institute of Stem Cell Research and Clinical translation,Shanghai East Hospital,Tongji University,Shanghai 200120,China;Shanghai Engineering Research Center for Stem Cell Clinical Treatment,Shanghai 200123,China
Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway
Yi-kuan Wu;Zheng-nan Ren;Sheng-long Zhu;Yun-zhou Wu;Gang Wang;Hao Zhang;Wei Chen;Zhao He;Xian-long Ye;Qi-xiao Zhai-State Key Laboratory of Food Science and Technology,Jiangnan University,Wuxi 214122,China;School of Food Science and Technology,Jiangnan University,Wuxi 214122,China;School of Medicine,Jiangnan University,Wuxi 214122,China;College of Life Science,Northeast Agricultural University,Harbin 150038,China;National Engineering Research Center for Functional Food,Jiangnan University,Wuxi 214122,China;Shandong Key Laboratory of Endocrinology and Lipid Metabolism,Jinan 250021,China;School of Medicine,Shandong University,Jinan 250012,China;Ganjiang Chinese Medicine Innovation Center,Nanchang 330000,China
CDDO-Im ameliorates osteoarthritis and inhibits chondrocyte apoptosis in mice via enhancing Nrf2-dependent autophagy
Jian Dong;Kai-jia Zhang;Gao-cai Li;Xing-ren Chen;Jia-jia Lin;Jia-wei Li;Zhong-yang Lv;Zhao-zhi Deng;Jin Dai;Wangsen Cao;Qing Jiang-Division of Sports Medicine and Adult Reconstructive Surgery,Department of Orthopedic Surgery,State Key Laboratory of Pharmaceutical Biotechnology,Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School,Nanjing 210008,China;Department of Orthopedics,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430022,China;Department of Critical Care Medicine,Jinling Hospital,School of Medicine,Nanjing University Medical School,Nanjing 210003,China;Center for Organ Fibrosis and Remodeling Research,Jiangsu Key Lab of Molecular Medicine,Nanjing University Medical School,Nanjing 210093,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。