首站-论文投稿智能助手
典型文献
The Moduli Space of Stable Coherent Sheaves via Non-archimedean Geometry
文献摘要:
We provide a construction of the moduli space of stable coherent sheaves in the world of non-archimedean geometry,where we use the notion of Berkovich non-archimedean analytic spaces.The motivation for our construction is Tony Yue Yu's non-archimedean enumerative geometry in Gromov-Witten theory.The construction of the moduli space of stable sheaves using Berkovich analytic spaces will give rise to the non-archimedean version of Donaldson-Thomas invariants.In this paper we give the moduli construction over a non-archimedean field K.We use the machinery of formal schemes,that is,we define and construct the formal moduli stack of(semi)-stable coherent sheaves over a discrete valuation ring R,and taking generic fiber we get the non-archimedean analytic moduli space of semistable coherent sheaves over the fractional non-archimedean field K.We generalize Joyce's d-critical scheme structure in[37]or Kiem-Li's virtual critical manifolds in[38]to the world of formal schemes,and Berkovich non-archimedean analytic spaces.As an application,we provide a proof for the motivic localization formula for a d-critical non-archimedean K-analytic space using global motive of vanishing cycles and motivic integration on oriented formal d-critical schemes.This generalizes Maulik's motivic localization formula for the motivic Donaldson-Thomas invariants.
文献关键词:
作者姓名:
Yun Feng JIANG
作者机构:
Department of Mathematics,University of Kansas,405 Snow Hall,1460 Jayhawk Blvd,Lawrence USA
引用格式:
[1]Yun Feng JIANG-.The Moduli Space of Stable Coherent Sheaves via Non-archimedean Geometry)[J].数学学报(英文版),2022(10):1722-1780
A类:
Moduli,Sheaves,archimedean,Gromov,Donaldson,semistable,Kiem,motivic,Maulik
B类:
Space,Stable,Coherent,via,Non,Geometry,We,provide,construction,moduli,coherent,sheaves,world,geometry,where,we,use,notion,Berkovich,analytic,spaces,motivation,our,Tony,Yue,enumerative,Witten,theory,using,will,give,rise,version,Thomas,invariants,In,this,paper,over,field,machinery,formal,schemes,that,define,stack,discrete,valuation,ring,taking,generic,fiber,get,fractional,Joyce,critical,structure,Li,virtual,manifolds,application,proof,localization,formula,global,motive,vanishing,cycles,integration,oriented,This,generalizes
AB值:
0.372463
相似文献
Gapless quantum spin liquid and global phase diagram of the spin-1/2 J1-J2 square antiferromagnetic Heisenberg model
Wen-Yuan Liu;Shou-Shu Gong;Yu-Bin Li;Didier Poilblanc;Wei-Qiang Chen;Zheng-Cheng Gu-Department of Physics,The Chinese University of Hong Kong,Hong Kong,China;Department of Physics,Beihang University,Beijing 100191,China;Laboratoire de Physique Théorique,C.N.R.S,and Université de Toulouse,Toulouse 31062,France;Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,China;Department of Physics and Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China;International Quantum Academy,and Shenzhen Branch,Hefei National Laboratory,Shenzhen 518040,China
Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point
Tuo Liu;Shuowei An;Zhongming Gu;Shanjun Liang;He Gao;Guancong Ma;Jie Zhu-Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China;The Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen 518057,China;Institute of Acoustics,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China;Division of Science,Engineering and Health Studies,College of Professional and Continuing Education,The Hong Kong Polytechnic University,Hong Kong,China;Department of Physics,Hong Kong Baptist University,Hong Kong,China
Alzheimer's disease:current status and perspective
Wenying Liu;Serge Gauthier;Jianping Jia-Innovation Center for Neurological Disorders and Department of Neurology,Xuanwu Hospital,Capital Medical University,National Clinical Research Center for Geriatric Diseases,Beijing 100053,China;Departments of Neurology and Neurosurgery,and Department of Psychiatry,McGill Centre for Studies in Aging,McGill University,Montreal H4H1R3,Canada;Beijing Key Laboratory of Geriatric Cognitive Disorders,Beijing 100053,China;Clinical Center for Neurodegenerative Disease and Memory Impairment,Capital Medical University,Beijing 100053,China;Center of Alzheimer's Disease,Beijing Institute of Brain Disorders,Collaborative Innovation Center for Brain Disorders,Capital Medical University,Beijing 100053,China;Key Laboratory of Neurodegenerative Diseases,Ministry of Education,Beijing 100053,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。