典型文献
Global Well-posedness for the Non-viscous MHD Equations with Magnetic Diffusion in Critical Besov Spaces
文献摘要:
In this paper,we mainly investigate the Cauchy problem of the non-viscous MHD equa-tions with magnetic diffusion.We first establish the local well-posedness(existence,uniqueness and continuous dependence)with initial data(u0,b0)in critical Besov spaces Bd/p+1p,1×Bd/pp,1 with 1≤p≤∞,and give a lifespan T of the solution which depends on the norm of the Littlewood-Paley decomposition(profile)of the initial data.Then,we prove the global existence in critical Besov spaces.In particular,the results of global existence also hold in Sobolev space C([0,∞);Hs(S2))×(C([0,∞);Hs-1(S2))∩ L2([0,∞);Hs(S2)))with s>2,when the initial data satisfies ∫S2 b0dx = 0 and‖u0‖B1∞,1(S2)+‖b0‖B0∞,1(S2)≤ε.It's worth noting that our results imply some large and low regularity initial data for the global existence.
文献关键词:
中图分类号:
作者姓名:
Wei Kui YE;Zhao Yang YIN
作者机构:
Institute of Applied Physics and Computational Mathematics,P.O.Box 8009,Beijing 100088,P.R.China;Department of Mathematics,Sun Yat-sen University,Guangzhou 510275,P.R.China
文献出处:
引用格式:
[1]Wei Kui YE;Zhao Yang YIN-.Global Well-posedness for the Non-viscous MHD Equations with Magnetic Diffusion in Critical Besov Spaces)[J].数学学报(英文版),2022(09):1493-1511
A类:
p+1p,b0dx
B类:
Global,Well,posedness,Non,viscous,MHD,Equations,Magnetic,Diffusion,Critical,Besov,Spaces,In,this,paper,mainly,investigate,Cauchy,problem,equa,magnetic,diffusion,first,establish,local,well,existence,uniqueness,continuous,dependence,initial,data,u0,critical,spaces,Bd,pp,give,lifespan,solution,which,depends,norm,Littlewood,Paley,decomposition,profile,Then,prove,global,particular,results,also,hold,Sobolev,Hs,S2,L2,when,satisfies,B1,B0,It,worth,noting,that,our,imply,some,large,low,regularity
AB值:
0.573664
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。