典型文献
地图图像智能识别与理解:特征、方法与展望
文献摘要:
随着测绘制图与通讯技术的发展,公众能够借助各种平台和工具实时地自由创建、发布、编辑和共享地图图像大数据资源和产品,地图图像在地图内容、绘图标准等方面具有了显著的泛在性,导致难以创建大规模、高质量的地图图像标注数据.因此,尽管现有深度学习方法在识别标准地图的内容中取得了突破性的进展,但受制于地图图像标注数据的局限,依然无法有效应对地图图像的识别和理解.根据目前国内外的相关研究进展与挑战,结合地理空间人工智能技术,探讨支持泛源地图图像大数据识别的理论与技术框架.首先,提出既能够表达地图图像内容,又能够为模型或算法表征的地图特征;然后,探讨面向地图图像内容识别的地理空间人工智能技术,以及面向地图图像理解的语义分析方法;最后,总结和展望基于地图图像大数据的相关应用及潜在价值.需要进一步研究支持地图图像表征的理论与方法,且集成地图图像显式内容的识别(地图感知)和地图图像潜在语义的分析(地图认知)才可充分挖掘地图图像大数据的价值.希望能够从数据表征和地理空间人工智能的角度为地图图像的研究提供新思路.
文献关键词:
地理空间人工智能;地图图像识别;泛源地图;语义分析
中图分类号:
作者姓名:
周熙然;李德仁;薛勇;汪云甲;邵振峰
作者机构:
中国矿业大学环境与测绘学院,江苏 徐州,221116;武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉,430079
文献出处:
引用格式:
[1]周熙然;李德仁;薛勇;汪云甲;邵振峰-.地图图像智能识别与理解:特征、方法与展望)[J].武汉大学学报(信息科学版),2022(05):641-650
A类:
地理空间人工智能,泛源地图,地图图像识别
B类:
图像智能识别,测绘,绘制图,通讯技术,大数据资源,绘图,图标,泛在性,图像标注,有深度,深度学习方法,识别标准,标准地图,受制于,进展与挑战,数据识别,理论与技术,技术框架,内容识别,图像理解,语义分析,相关应用,潜在价值,研究支持,图像表征,理论与方法,显式,图感,地图认知,大数据的价值,数据表征
AB值:
0.297019
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。