首站-论文投稿智能助手
典型文献
Investigation on halogen-doped n-type SnTe thermoelectrics
文献摘要:
Recent theoretical predictions and experimental findings on the transport properties of n-type SnTe have triggered extensive researches on this simple binary com-pound,despite the realization of n-type SnTe being a great challenge.Herein,Cl as a donor dopant can effectively regulate the position of Fermi level in Sn0.6Pb0.4Te matrix and successfully achieve the n-type transport behavior in SnTe.An outstanding power factor of~14.7 μW·cm-1·K-2 at 300 K was obtained for Cl-doped Sn0.6Pb0.4Te sample.By combining the experimental analysis with theoretical calculations,the transport properties of n-type SnTe ther-moelectrics doped with different halogen dopants(Cl,Br,and I)were then systematically investigated and estimated.The results demonstrated that Br and I had better doping efficiencies compared with Cl,which contributed to the well-optimized carrier concentrations of~1.03×1019 and~1.11×1019 cm-3 at 300 K,respectively.The improved n-type carrier concentrations effectively lead to the significant enhancement on the thermoelectric perfor-mance of n-type SnTe.Our study further promoted the experimental progress and deep interpretation of the transport features in n-type SnTe thermoelectrics.The present results could also be crucial for the development of n-type counterparts for SnTe-based thermoelectric devices.
文献关键词:
作者姓名:
Chang-Rong Guo;Bing-Chao Qin;Dong-Yang Wang;Li-Dong Zhao
作者机构:
School of Materials Science and Engineering,Beihang University,Beijing 100191,China
引用格式:
[1]Chang-Rong Guo;Bing-Chao Qin;Dong-Yang Wang;Li-Dong Zhao-.Investigation on halogen-doped n-type SnTe thermoelectrics)[J].稀有金属(英文版),2022(11):3803-3814
A类:
6Pb0,4Te,moelectrics
B类:
Investigation,halogen,doped,type,SnTe,thermoelectrics,Recent,theoretical,predictions,experimental,findings,transport,properties,have,triggered,extensive,researches,this,simple,binary,pound,despite,realization,being,great,challenge,Herein,Cl,donor,effectively,regulate,position,Fermi,level,Sn0,matrix,successfully,achieve,behavior,An,outstanding,power,was,obtained,sample,By,combining,analysis,calculations,different,dopants,Br,were,then,systematically,investigated,estimated,results,demonstrated,that,had,better,doping,efficiencies,compared,which,contributed,well,optimized,carrier,concentrations,respectively,improved,lead,significant,enhancement,perfor,mance,Our,study,further,promoted,progress,deep,interpretation,features,present,could,also,crucial,development,counterparts,devices
AB值:
0.529027
相似文献
Remarkable catalysis of spinel ferrite XFe2O4(X=Ni,Co,Mn,Cu,Zn)nanoparticles on the dehydrogenation properties of LiAlH4:An experimental and theoretical study
Sheng Wei;Jiaxi Liu;Yongpeng Xia;Huanzhi Zhang;Riguang Cheng;Lixian Sun;Fen Xu;Pengru Huang;Federico Rosei;Aleskey A.Pimerzin;Hans Jüergen Seifert;Hongge Pan-School of Material Science&Engineering,Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials,Guilin University of Electronic Technology,Guilin 541004,China;School of Mechanical&Electrical Engineering,Guilin University of Electronic Technology,Guilin 541004,China;Centre énergie,Matériaux et Télécommunications,Institut National de la Recherche Scientifique,1650 Boul,Lionel Boulet,Varennes,J3×1S2,Quebec,Canada;Samara State Technical University,Samara,443100,Russia;Institute for Applied Materials,Karlsruhe Institute of Technology,Hermann von Helmholtz Platz 1,76344 Eggenstein Leopoldshafen,Germany;School of New Energy Science and Technology,Xi'an Technological University,Xi'an 710021,China
High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes
Xin-Yu Mao;Xiao-Lei Shi;Liang-Chuang Zhai;Wei-Di Liu;Yue-Xing Chen;Han Gao;Meng Li;De-Zhuang Wang;Hao Wu;Zhuang-Hao Zheng;Yi-Feng Wang;Qingfeng Liu;Zhi-Gang Chen-Centre for Future Materials,University of Southern Queensland,Springfield Central,Brisbane.4300,Australia;School of Chemistry and Physics,Queensland University of Technology,Brisbane,QLD 4000,Australia;State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemical Engineering,Nanjing Tech University,Nanjing 211816,China;Australian Institute for Bioengineering and Nanotechnology,The University of Queensland,Brisbane,QLD 4072,Australia;Shenzhen Key Laboratory of Advanced Thin Films and Applications,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China;Key Laboratory of Material Physics of Ministry of Education,School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China;School of Mechanical and Mining Engineering,The University of Queensland,St Lucia,Brisbane,QLD 4072,Australia;College of Materials Science and Engineering,Nanjing Tech University,Nanjing 211816,China;Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites,Nanjing Tech University,Nanjing 211816,China;CAS Key Laboratory of Carbon Materials,Institute of Coal Chemistry,Chinese Academy of Sciences,Taiyuan 030001,China
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Manipulate energy transport via fluorinated spacers towards record-efficiency 2D Dion-Jacobson CsPbI3 solar cells
Yutian Lei;Zhenhua Li;Haoxu Wang;Qian Wang;Guoqiang Peng;Youkui Xu;Haihua Zhang;Gang Wang;Liming Ding;Zhiwen Jin-School of Physical Science and Technology&Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China;School of Physical Science and Technology&Lanzhou Center for Theoretical Physics&Key Laboratory of Theoretical Physics of Gansu Province,Lanzhou University,Lanzhou 730000,China;Delft University of Technology,Photovoltaic Materials and Devices Group,Delft 2628CD,the Netherlands;Institute of Molecular Plus,Tianjin University,Tianjin 300072,China;Department of Microelectronic Science and Engineering,School of Physical Science and Technology,Ningbo University,Ningbo 315211,China;Key Laboratory of Nanosystem and Hierarchical Fabrication,National Center for Nanoscience and Technology,Beijing 100190,China
Zeolitic imidazolate framework-67 derived Al-Co-S hierarchical sheets bridged by nitrogen-doped graphene:Incorporation of PANI derived carbon nanorods for solid-state asymmetric supercapacitors
Emad S.Goda;Bidhan Pandit;Sang Eun Hong;Bal Sydulu Singu;Seong K.Kim;Essam B.Moustafa;Kuk Ro Yoon-Organic Nanomaterials Lab,Department of Chemistry,Hannam University,Daejeon 34054,Republic of Korea;Gas Analysis and Fire Safety Laboratory,Chemistry Division,National Institute for Standards,136,Giza 12211,Egypt;Department of Materials Science and Engineering and Chemical Engineering,Universidad Carlos Ⅲ de Madrid,Avenida de La Universidad 30,28911 Leganés,Madrid,Spain;Department of Chemical and Biomolecular Engineering,Yonsei University,Seoul 03722,Republic of Korea;Department of Chemical Engineering,Hannam University,1646 Yuseongdae-ro,Yuseong-gu,Daejeon 34054,Republic of Korea;Mechanical Engineering Department,Faculty of Engineering,King Abdulaziz University,P.O.Box 80204,Jeddah 22254,Saudi Arabia
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。