首站-论文投稿智能助手
典型文献
A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler
文献摘要:
The nano-opto-electro-mechanical systems (NOEMS) are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical, electrical and mechanical modes. To date, studies of NOEMS using van der Waals (vdW) heterostructures are very limited, although vdW materials are known for emerging phenomena such as spin, valley, and topological physics. Here, we devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-electro-mechanical couplings in one single device. We demonstrated several functionalities, including nano- mechanical resonator, vacuum channel diodes, and ultrafast thermo-radiator, using monolithically sculpted graphene NOEMS as a platform. Optical readout of electric and magnetic field tuning of mechanical resonance in a CrOCl/ graphene vdW NOEMS is further demonstrated. Our results suggest that the introduction of the vdW heterostructure into the NOEMS family will be of particular potential for the development of novel lab-on-a-chip systems.
文献关键词:
作者姓名:
Tongyao Zhang;Hanwen Wang;Xiuxin Xia;Ning Yan;Xuanzhe Sha;Jinqiang Huang;Kenji Watanabe;Takashi Taniguchi;Mengjian Zhu;Lei Wang;Jiantou Gao;Xilong Liang;Chengbing Qin;Liantuan Xiao;Dongming Sun;Jing Zhang;Zheng Han;Xiaoxi Li
作者机构:
State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University,Taiyuan 030006,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China;Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;School of Material Science and Engineering,University of Science and Technology of China,Anhui 230026,China;Research Center for Functional Materials,National Institute for Materials Science,1-1 Namiki,Tsukuba 305-0044,Japan;International Center for Materials Nanoarchitectonics,National Institute for Materials Science,1-1 Namiki,Tsukuba 305-0044,Japan;College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China;The Key Laboratory of Science and Technology on Silicon Devices,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China;The University of Chinese Academy of Sciences,Beijing 100029,China;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,Shanxi University,Taiyuan 030006,China
引用格式:
[1]Tongyao Zhang;Hanwen Wang;Xiuxin Xia;Ning Yan;Xuanzhe Sha;Jinqiang Huang;Kenji Watanabe;Takashi Taniguchi;Mengjian Zhu;Lei Wang;Jiantou Gao;Xilong Liang;Chengbing Qin;Liantuan Xiao;Dongming Sun;Jing Zhang;Zheng Han;Xiaoxi Li-.A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler)[J].光:科学与应用(英文版),2022(03):365-374
A类:
NOEMS,CrOCl
B类:
monolithically,sculpted,van,der,Waals,nano,opto,electro,mechanical,coupler,systems,are,hybrid,solid,devices,that,hold,promises,both,classical,quantum,manipulations,interplay,between,one,more,degrees,freedom,optical,electrical,modes,To,date,studies,using,vdW,heterostructures,very,limited,although,materials,known,emerging,phenomena,such,spin,valley,topological,physics,Here,devise,universal,method,easily,robustly,fabricate,into,architecture,hosts,couplings,single,We,demonstrated,several,functionalities,including,resonator,vacuum,channel,diodes,ultrafast,thermo,radiator,graphene,platform,Optical,readout,magnetic,field,tuning,resonance,further,Our,results,suggest,introduction,family,will,particular,potential,development,novel,lab,chip
AB值:
0.594229
相似文献
Recent progress in the synthesis of novel two-dimensional van der Waals materials
Renji Bian;Changcun Li;Qing Liu;Guiming Cao;Qundong Fu;Peng Meng;Jiadong Zhou;Fucai Liu;Zheng Liu-School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China;Yangtze Delta Region Institute(Huzhou),University of Electronic Science and Technology of China,Huzhou 313099,China;School of Materials Science and Engineering,Nanyang Technological University,Singapore 639798,Singapore;CNRS-International-NTU-Thales Research Alliance(CINTRA),Singapore 637553,Singapore;Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement(Ministry of Education),Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems,and School of Physics,Beijing Institute of Technology,Beijing 100081,China;School of Electrical and Electronic Engineering,Nanyang Technological University,Singapore 639798,Singapore
Two-dimensional Dirac-line semimetals resistant to strong spin-orbit coupling
Deping Guo;Pengjie Guo;Shijing Tan;Min Feng;Limin Cao;Zheng-Xin Liu;Kai Liu;Zhong-Yi Lu;Wei Ji-Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-Nano Devices,Department of Physics,Renmin University of China,Beijing 100872,China;Songshan Lake Materials Laboratory,Dongguan 523808,China;Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China;School of Physics and Technology and Key Laboratory of Artificial Micro-and Nano-Structures of Ministry of Education,Wuhan University,Wuhan 430072,China;Institute for Advanced Studies,Wuhan University,Wuhan 430072,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。