首站-论文投稿智能助手
典型文献
Discovery of pulmonary fibrosis inhibitor targeting TGF-β RI in Polygonum cuspidatum by high resolution mass spectrometry with in silico strategy
文献摘要:
Pulmonary fibrosis(PF)is an irreversible lung disease that is characterized by excessive scar tissue with a poor median survival rate of 2-3 years.The inhibition of transforming growth factor-β receptor type-Ⅰ(TGF-β RI)by an appropriate drug may provide a promising strategy for the treatment of this disease.Polygonum cuspidatum(PC)is a well-known traditional Chinese herbal medicine which has an anti-PF effect.Accordingly,a combination of high resolution mass spectrometry with an in silico strategy was developed as a new method to search for potential chemical ingredients of PC that target the TGF-β RI.Based on this strategy,a total of 24 ingredients were identified.Then,absorption,distribution,meta-bolism,and excretion(ADME)-related properties were subsequently predicted to exclude compounds with potentially undesirable pharmacokinetics behaviour.Molecular docking studies on TGF-β RI were adopted to discover new PF inhibitors.Eventually,a compound that exists in PC known as resveratrol was proven to have excellent biological activity on TGF-β RI,with an ICso of 2.211 μM in vitro.Furthermore,the complex formed through molecular docking was tested via molecular dynamics simulations,which revealed that resveratrol had strong interactions with residues of TGF-β RI.This study revealed that resveratrol has significant potential as a treatment for PF due to its ability to target TGF-β RI.In addition,this research demonstrated the exploration of natural products with excellent biological activities toward specific targets via high resolution mass spectrometry in combination with in silico technology is a promising strategy for the discovery of novel drugs.
文献关键词:
作者姓名:
Huarong Xu;Jiameng Qu;Jian Wang;Kefei Han;Qing Li;Wenchuan Bi;Ran Liu
作者机构:
National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control,School of Pharmacy,Shenyang Pharmaceutical University,Shenyang,110016,China;School of Traditional Chinese Material Medica,Shenyang Pharmaceutical University,Shenyang,110016,China;Key Laboratory of Structure-Based Drug Design&Discovery of Ministry of Education,Shenyang Pharmaceutical University,Shenyang,110016,China;Health Science Center Department of Pharmacy,Shenzhen University,Shenzhen,Guangdong,518118,China
引用格式:
[1]Huarong Xu;Jiameng Qu;Jian Wang;Kefei Han;Qing Li;Wenchuan Bi;Ran Liu-.Discovery of pulmonary fibrosis inhibitor targeting TGF-β RI in Polygonum cuspidatum by high resolution mass spectrometry with in silico strategy)[J].药物分析学报(英文),2022(06):860-868
A类:
B类:
Discovery,pulmonary,fibrosis,targeting,TGF,RI,Polygonum,cuspidatum,by,high,resolution,mass,spectrometry,silico,strategy,Pulmonary,PF,irreversible,lung,disease,that,characterized,excessive,scar,tissue,poor,median,survival,years,inhibition,transforming,growth,receptor,type,appropriate,may,provide,promising,treatment,this,well,known,traditional,Chinese,herbal,medicine,which,has,anti,effect,Accordingly,combination,was,developed,new,method,chemical,ingredients,Based,total,were,identified,Then,absorption,distribution,meta,bolism,excretion,ADME,related,properties,subsequently,predicted,exclude,compounds,potentially,undesirable,pharmacokinetics,behaviour,Molecular,docking,studies,adopted,inhibitors,Eventually,exists,resveratrol,proven,have,excellent,biological,activity,ICso,vitro,Furthermore,complex,formed,through,molecular,tested,via,dynamics,simulations,revealed,had,strong,interactions,residues,This,study,significant,its,ability,In,addition,research,demonstrated,exploration,natural,products,activities,toward,specific,targets,technology,discovery,novel,drugs
AB值:
0.562239
相似文献
Potential medicinal plants involved in inhibiting 3CLpro activity:A practical alternate approach to combating COVID-19
Fan Yang;Xiao-lan Jiang;Akash Tariq;Sehrish Sadia;Zeeshan Ahmed;Jordi Sardans;Muhammad Aleem;Riaz Ullah;Rainer W.Bussmann-The Medical Center of General Practice,Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital,Chengdu 610041,Sichuan Province,China;Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830041,Xinjiang Uygur Autonomous Region,China;Department of Biological Sciences,University of Veterinary and Animal Sciences,Ravi Campus,Pattoki 55300,Pakistan;Consejo Superior de Investigaciones Científicas,Global Ecology Unit,Centre for Ecological Research and Forestry Applications-Consejo Superior de Investigaciones Cientificas-Universitat Autònoma de Barcelona,Bellaterra,Barcelona 08193,Catalonia,Spain;Centre for Ecological Research and Forestry Applications,Cerdanyola del Vallès 08193,Catalonia,Spain;Department of Pharmacognosy,College of Pharmacy,King Saud University,Riyadh 11451,Saudi Arabia;Department of Ethnobotany,Institute of Botany,Ilia State University,Tbilisi 0105,Georgia
Integrated UHPLC-MS and network pharmacology to explore the active constituents and pharmacological mechanisms of Shenzao dripping pills against coronary heart disease
Tao Hu;Ke-Ning Zheng;Jia-Yin Liang;Dan Tang;Lu-Yong Zhang;Ming-Hua Xian;Shu-Mei Wang-Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine,Guangdong Pharmaceutical University,Guangzhou 510006,China;Engineering&Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province,Guangzhou 510006,China;School of Traditional Chinese Medicine,Guangdong Pharmaceutical University,Guangzhou 510006,China;Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems,Guangdong Pharmaceutical University,Guangzhou 510006,China;School of Pharmacy,Guangdong Pharmaceutical University,Guangzhou 510006,China
Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo
Yan Zhang;Pin Lv;Junmei Ma;Ning Chen;Huishan Guo;Yan Chen;Xiaoruo Gan;Rong Wang;Xuqiang Liu;Sufang Fan;Bin Cong;Wenyi Kang-Hebei Key Laboratory of Forensic Medicine,College of Forensic Medicine,Hebei Medical University,Shijiazhuang 050017,China;Hebei Food Safety Key Laboratory,Hebei Food Inspection and Research Institute,Shijiazhuang 050091,China;Cardiovascular Medical Science Center Department of Cell Biology,Hebei Medical University,Shijiazhuang 050017,China;National R&D Center for Edible Fungus Processing Technology,Henan University,Kaifeng 475004,China;Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology,Chinese Academy of Medical Sciences,Beijing 100730,China
Discovery of SARS-CoV-2-E channel inhibitors as antiviral candidates
Yi Wang;Sui Fang;Yan Wu;Xi Cheng;Lei-ke Zhang;Xu-rui Shen;Shuang-qu Li;Jian-rong Xu;Wei-juan Shang;Zhao-bing Gao;Bing-qing Xia-CAS Key Laboratory of Receptor Research,Stake Key Laboratory of Drug Research,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;University of Chinese Academy of Sciences,Beijing 100049,China;State Key Laboratory of Virology,Wuhan Institute of Virology,Center for Biosafety Mega-Science,Chinese Academy of Sciences,Wuhan 430071,China;Academy of Integrative Medicine,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China;Department of Pharmacology and Chemical Biology,Shanghai Jiao Tong University School of Medicine,Shanghai 200025,China;Zhongshan Institute of Drug Discovery,Institution for Drug Discovery Innovation,Chinese Academy of Science,Zhongshan 528400,China
Okicamelliaside targets the N-terminal chaperone pocket of HSP90 disrupts the chaperone protein interaction of HSP90-CDC37 and exerts antitumor activity
Chuan-jing Cheng;Kai-xin Liu;Man Zhang;Fu-kui Shen;Li-li Ye;Wen-bo Wu;Xiao-tao Hou;Er-wei Hao;Yuan-yuan Hou;Gang Bai-State Key Laboratory of Medicinal Chemical Biology,College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research,Nankai University,Tianjin 300353,China;Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues,Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica,Guangxi University of Chinese medicine,Nanning 530200,China;China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research,Guangxi University of Chinese Medicine,Nanning 530200,China
Discovery of a novel DDRs kinase inhibitor XBLJ-13 for the treatment of idiopathic pulmonary fibrosis
Ying Dong;Bi-xi Tang;Qi Wang;Li-wei Zhou;Cong Li;Xuan Zhang;Dan-dan Sun;Xin Sun;Xue-mei Zhang;Bing Xiong;Jia Li;Hong Shi;Dan-qi Chen;Yi Zang-State Key Laboratory of Drug Research,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;University of Chinese Academy of Sciences,Beijing 100049,China;Department of Pharmacology,School of Pharmacy,Fudan University,Shanghai 201203,China;Department of Medicinal Chemistry,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;Center for Supramolecular Chemistry and Catalysis and Department of Chemistry,College of Sciences,Shanghai University,Shanghai 200444,China;Schoolof Chinese Materia Medica,Nanjing University of Chinese Medicine,Nanjing 210023,China;Schoolof Pharmacy,Henan University,Kaifeng 475004,China;Open Studio for Druggability Research of Marine Natural Products,Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao 266237,China;School of Pharmaceutical Science and Technology,Hangzhou Institute for Advanced Study,UCAS,Hangzhou 310024,China;Department of Anesthesiology of Shanghai Pulmonary Hospital,School of medicine,Tongji University,Shanghai 200433,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。