首站-论文投稿智能助手
典型文献
Non-Halogenated Solvent-Processed High-Efficiency Polymer Solar Cells:the Role of Diphenyl Ether in Morphology,Light-Trapping,Transport Properties
文献摘要:
There is an urgent need to use green non-halogenated solvents to prepare polymer solar cells(PSCs)for industrialization.It is time-consuming but necessary to find a suitable non-halogenated solvent/additive combination for a given donor:acceptor materials system.In this research,we report a non-halogenated binary solvent system toluene/diphenyl ether(DPE)for the PBDTT-DTffBT:PC71BM and PM6:Y6 blending systems that exhibit comparable power conversion efficiency(PCE)to that of devices prepared with halogenated solvents.The nanoscale morphology indicates that blending film processed solely with toluene has poor phase segregation and a rough surface,which hinders charge separation and interfacial contact.Besides,the total absorption spectra revealed significant light-trapping losses in the toluene-processed solar cells,resulting in low photocurrent generation.DPE incorporation addresses these issues and significantly improves the short-circuit current density and fill factor.Moreover,non-halogen solvent-processed devices exhibit high hole mobility and low transporting impedance properties.The present study enriches the families of eco-friendly,high-efficiency PSCs fabricated using non-halogenated solvents.
文献关键词:
作者姓名:
Yi Chen;Xiangxu Ding;Ge Wang;Songwen Xiao;Xin Liu;Zihan Zhu;Chen Wang;Shanpeng Wen
作者机构:
State Key Laboratory On Integrated Optoelectronics and College of Electronic Science and Engineering,Jilin University,Changchun 130012,China
引用格式:
[1]Yi Chen;Xiangxu Ding;Ge Wang;Songwen Xiao;Xin Liu;Zihan Zhu;Chen Wang;Shanpeng Wen-.Non-Halogenated Solvent-Processed High-Efficiency Polymer Solar Cells:the Role of Diphenyl Ether in Morphology,Light-Trapping,Transport Properties)[J].天津大学学报(英文版),2022(05):423-432
A类:
PBDTT,DTffBT
B类:
Non,Halogenated,Solvent,Processed,High,Efficiency,Polymer,Solar,Cells,Role,Diphenyl,Ether,Morphology,Light,Trapping,Transport,Properties,There,urgent,need,use,green,halogenated,solvents,polymer,solar,cells,PSCs,industrialization,It,consuming,but,necessary,find,suitable,additive,combination,given,donor,acceptor,materials,In,this,research,report,binary,toluene,diphenyl,ether,DPE,PC71BM,PM6,Y6,blending,systems,that,exhibit,comparable,power,conversion,efficiency,PCE,devices,prepared,nanoscale,morphology,indicates,film,processed,solely,poor,phase,segregation,rough,surface,which,hinders,charge,separation,interfacial,contact,Besides,total,absorption,spectra,revealed,light,trapping,losses,resulting,low,photocurrent,generation,incorporation,addresses,these,issues,significantly,improves,short,circuit,density,fill,Moreover,high,hole,mobility,transporting,impedance,properties,present,study,enriches,families,eco,friendly,fabricated,using
AB值:
0.680268
相似文献
Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells
Tianhao Wu;Xiao Liu;Xinhui Luo;Hiroshi Segawa;Guoqing Tong;Yiqiang Zhang;Luis K.Ono;Yabing Qi;Liyuan Han-State Key Laboratory of Metal Matrix Composites,School of Material Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,People's Republic of China;Energy Materials and Surface Sciences Unit(EMSSU),Okinawa Institute of Science and Technology Graduate University(OIST),1919-1 Tancha,Onna-son,Kunigami-gun,Okinawa 904-0495,Japan;Special Division of Environmental and Energy Science,Komaba Organization for Educational Excellence(KOMEX),College of Arts and Sciences,University of Tokyo,Tokyo 153-8902,Japan;School of Materials Science and Engineering,Henan Institute of Advanced Technology,Zhengzhou University,Zhengzhou 450001,People's Republic of China
Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells
Qiaonan Chen;Yung Hee Han;Leandro R.Franco;Cleber F.N.Marchiori;Zewdneh Genene;C.Moyses Araujo;Jin-Woo Lee;Tan Ngoc-Lan Phan;Jingnan Wu;Donghong Yu;Dong Jun Kim;Taek-Soo Kim;Lintao Hou;Bumjoon J.Kim;Ergang Wang-Siyuan Laboratory,Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials,Department of Physics,Jinan University,Guangzhou 510632,People's Republic of China;Department of Chemistry and Chemical Engineering,Chalmers University of Technology,SE-412 96,G?teborg,Sweden;Department of Chemical and Biomolecular Engineering,Korea Advanced Institute of Science and Technology(KAIST),Daejeon 34141,Republic of Korea;Department of Engineering and Physics,Karlstad University,65188 Karlstad,Sweden;Materials Theory Division,Department of Physics and Astronomy,Uppsala University,75120 Uppsala,Sweden;Department of Chemistry and Bioscience,Aalborg University,9220 Aalborg,Denmark;Sino-Danish Center for Education and Research,8000 Aarhus,Denmark;Department of Mechanical Engineering,Korea Advanced Institute of Science and Technology(KAIST),Daejeon 34141,Republic of Korea;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,People's Republic of China
Enhanced Photovoltage for Inverted Perovskite Solar Cells Using Delafossite CuCrO2 Hole Transport Material
Xue-yan Shan;Bin Tong;Shi-mao Wang;Xiao Zhao;Wei-wei Dong;Gang Meng;Zan-hong Deng;Jing-zhen Shao;Ru-hua Tao;Xiao-dong Fang-Anhui Provincial Key Laboratory of Photonic Devices and Materials,Anhui Institute of Optics and Fine Mechanics,Key Lab of Photovoltaic and Energy Conservation Materials,Hefei Institutes of Phys-ical Science,Chinese Academy of Sciences,Hefei 230031,China;University of Science and Technology of China,Hefei 230026,China;Advanced Laser Technology Laboratory of Anhui Province,Hefei 230037,China;School of Environmental Science and Optoelectronic Technology University of Science and Technol-ogy of China,Hefei 230026,China;School of Materials and Chemical Engineering,Anhui Jianzhu University,Hefei 230601,China;College of New Materials and New Energies,Shenzhen Technology University,Shenzhen 518118,China
Influence of Halide Choice on Formation of Low-Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells
Xueping Liu;Thomas Webb;Linjie Dai;Kangyu Ji;Joel A.Smith;Rachel C.Kilbride;Mozhgan Yavari;Jinxin Bi;Aobo Ren;Yuanyuan Huang;Zhuo Wang;Yonglong Shen;Guosheng Shao;Stephen J.Sweeney;Steven Hinder;Hui Li;David G.Lidzey;Samuel D.Stranks;Neil C.Greenham;S.Ravi P.Silva;Wei Zhang-State Center for International Cooperation on Designer Low-carbon&Environmental Materials(CDLCEM),Zhengzhou University,Zhengzhou 450001,China;Advanced Technology Institute,Department of Electrical and Electronic Engineering,University of Surrey,Guildford GU2 7XH,UK;Cavendish Laboratory,University of Cambridge,Cambridge CB3 0HE,UK;Department of Physics and Astronomy,University of Sheffield,Sheffield S37RH,UK;Department of Physics,University of Oxford,Clarendon Laboratory,Oxford OX1 3PU,UK;Advanced Technology Institute and Department of Physics,University of Surrey,Guildford GU2 7XH,UK;The Surface Analysis Laboratory,Department of Mechanical Engineering Sciences,University of Surrey,Guildford GU2 7XH,UK;Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China;Department of Chemical Engineering and Biotechnology,University of Cambridge,Cambridge CB3 0AS,UK
Air-Processed Efficient Organic Solar Cells from Aromatic Hydrocarbon Solvent without Solvent Additive or Post-Treatment:Insights into Solvent Effect on Morphology
Ruijie Ma;Tao Yang;Yiqun Xiao;Tao Liu;Guangye Zhang;Zhenghui Luo;Gang Li;Xinhui Lu;He Yan;Bo Tang-College of Chemistry,Chemical Engineering and Materials Science,Key Laboratory of Molecular and Nano Probes,Ministry of Education,Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong,Institute of Materials and Clean Energy,Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals,Shandong Normal University,Jinan 250014,China;Department of Chemistry,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials,Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration&Reconstruction,Hong Kong University of Science and Technology,Clear Water Bay,Kowloon,Hong Kong,China;College of New Materials and New Energies,Shenzhen Technology University,Shenzhen 518118 China;Department of Physics,Chinese University of Hong Kong,New Territories Hong Kong,China;Hong Kong University of Science and Technology-Shenzhen Research Institute,No.9 Yuexing first RD,Hi-tech Park,Nanshan,Shenzhen 518057,China;Institute of Polymer Optoelectronic Materials and Devices,State Key Laboratory of Luminescent Materials and Devices,South China University of Technology(SCUT),Guangzhou 510640,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。