首站-论文投稿智能助手
典型文献
Strain of 2D materials via substrate engineering
文献摘要:
Two-dimensional (2D) materials have received extensive attention in the fields of electronics,optoelec-tronics,and magnetic devices attributed to their unique electronic structures and physical properties.The application of strain is a simple and effective strategy to change the lattice structure of 2D materials thus modulating their physical properties,which further facilitate their applications in carrier mobility transistor,magnetic sensor,single-photon emitter etc.In this short review,we focus on the strain ap-plied via substrate engineering.Firstly,the relationship between the strain and physical properties has been summarized.Secondly,the methods for achieving substrate engineering-induced strain have been demonstrated.Finally,the latest applications of strained 2D materials have been introduced.In addition,the future challenges and development prospects of strain-modulated 2D materials have also been pro-posed.
文献关键词:
作者姓名:
Yangwu Wu;Lu Wang;Huimin Li;Qizhi Dong;Song Liu
作者机构:
Institute of Chemical Biology and Nanomedicine (ICBN),State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,Hunan University,Changsha 410082,China;State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,Hunan University,Changsha 410082,China
引用格式:
[1]Yangwu Wu;Lu Wang;Huimin Li;Qizhi Dong;Song Liu-.Strain of 2D materials via substrate engineering)[J].中国化学快报(英文版),2022(01):153-162
A类:
B类:
Strain,2D,materials,via,substrate,engineering,Two,dimensional,have,received,extensive,attention,fields,electronics,optoelec,magnetic,devices,attributed,their,unique,structures,physical,properties,simple,effective,strategy,change,lattice,thus,modulating,which,further,facilitate,applications,carrier,mobility,transistor,sensor,single,photon,emitter,etc,In,this,short,review,focus,plied,Firstly,relationship,between,has,been,summarized,Secondly,methods,achieving,induced,demonstrated,Finally,latest,strained,introduced,addition,future,challenges,development,prospects,modulated,also,posed
AB值:
0.592474
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques
Guannan Qian;Junyang Wang;Hong Li;Zi-Feng Ma;Piero Pianetta;Linsen Li;Xiqian Yu;Yijin Liu-Stanford Synchrotron Radiation Lightsource,SLAC National Accelerator Laboratory,Menlo Park,CA 94025,USA;Department of Chemical Engineering,Shanghai Electrochemical Energy Device Research Center(SEED),School of Chemistry and Chemical Engineering,Frontiers Science Center for Transformative Molecules,Shanghai Jiao Tong University,Shanghai 200240,China;Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Shanghai Jiao Tong University Sichuan Research Institute,Chengdu 610213,China
Approaching strain limit of two-dimensional MoS2 via chalcogenide substitution
Kailang Liu;Xiang Chen;Penglai Gong;Ruohan Yu;Jinsong Wu;Liang Li;Wei Han;Sanjun Yang;Chendong Zhang;Jinghao Deng;Aoju Li;Qingfu Zhang;Fuwei Zhuge;Tianyou Zhai-State Key Laboratory of Materials Processing and Die & Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Nano and Heterogeneous Materials Center,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Nanostructure Research Center,Wuhan University of Technology,Wuhan 430070,China;Institutes of Physical Science and Information Technology,Anhui University,Hefei 231699,China;School of Physics and Technology,Wuhan University,Wuhan 430072,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。