首站-论文投稿智能助手
典型文献
On the Radius of Analyticity of Solutions to 3D Navier-Stokes System with Initial Data in Lp
文献摘要:
Given initial data u0 ∈ Lp(R3)for some p in[3,18/5[,the auhtors first prove that 3D incompressible Navier-Stokes system has a unique solution u=uL+v with uL def=et△u0 and v ∈(L)∞([0,T];(H)5/2-6/p)n(L)1(]0,T[;(H)9/2-6/p)for some positive time T.Then they derive an explicit lower bound for the radius of space analyticity of v,which in particular extends the corresponding results in[Chemin,J.-Y.,Gallagher,I.and Zhang,P.,On the radius of analyticity of solutions to semi-linear parabolic system,Math.Res.Lett.,27,2020,1631-1643,Herbst,I.and Skibsted,E.,Analyticity estimates for the Navier-Stokes equations,Adv.in Math.,228,2011,1990-2033]with initial data in(H)s(R3)for s ∈[1/2,3/2[.
文献关键词:
作者姓名:
Ruilin HU;Ping ZHANG
作者机构:
Academy of Mathematics&Systems Science,the Chinese Academy of Sciences,Beijing 100190,China;Academy of Mathematics&Systems Science and Hua Looo-Keng Key Laboratory of Mathematics,the Chinese Academy of Sciences,Beijing 100190,China
引用格式:
[1]Ruilin HU;Ping ZHANG-.On the Radius of Analyticity of Solutions to 3D Navier-Stokes System with Initial Data in Lp)[J].数学年刊B辑(英文版),2022(05):749-772
A类:
Analyticity,auhtors,uL+v,Chemin,Gallagher,Skibsted
B类:
On,Radius,Solutions,Navier,Stokes,System,Initial,Data,Lp,Given,initial,data,u0,R3,some,first,prove,that,incompressible,system,has,unique,def,positive,Then,they,derive,explicit,lower,bound,radius,space,analyticity,which,particular,extends,corresponding,results,Zhang,solutions,semi,linear,parabolic,Math,Res,Lett,Herbst,estimates,equations,Adv
AB值:
0.522421
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。