首站-论文投稿智能助手
典型文献
Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction
文献摘要:
In this paper, we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature (EASAT) and EASAT decadal prediction. The observational analysis shows that the winter EASAT and East Asian minimum SAT (EAmSAT) display strong in-phase fluctuations and a significant 60–80-year multidecadal variability, apart from a long-term warming trend. The winter EASAT experienced a decreasing trend in the last two decades, which is consistent with the occurrence of extremely cold events in East Asia winters in recent years. The winter NAO leads the detrended winter EASAT by 12–18 years with the greatest significant positive correlation at the lead time of 15 years. Further analysis shows that ENSO may affect winter EASAT interannual variability, but does not affect the robust lead relationship between the winter NAO and EASAT. We present the coupled oceanic-atmospheric bridge (COAB) mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation (AMO) and Africa–Asia multidecadal teleconnection (AAMT) pattern. An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism, with good hindcast performance. The winter EASAT for 2020–34 is predicted to keep on fluctuating downward until~2025, implying a high probability of occurrence of extremely cold events in coming winters in East Asia, followed by a sudden turn towards sharp warming. The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.
文献关键词:
作者姓名:
Jianping LI;Tiejun XIE;Xinxin TANG;Hao WANG;Cheng SUN;Juan FENG;Fei ZHENG;Ruiqiang DING
作者机构:
Frontiers Science Center for Deep Ocean Multispheres and Earth System-Key Laboratory of Physical Oceanography-Institute for Advanced Ocean Studies-Academy of the Future Ocean,Ocean University of China,Qingdao 266100,China;Laboratory for Ocean Dynamics and Climate,Pilot Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China;College of Global Change and Earth System Sciences,Beijing Normal University,Beijing 100875,China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University,Beijing 100875,China
引用格式:
[1]Jianping LI;Tiejun XIE;Xinxin TANG;Hao WANG;Cheng SUN;Juan FENG;Fei ZHENG;Ruiqiang DING-.Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction)[J].大气科学进展(英文版),2022(04):625-642
A类:
Wintertime,EASAT,EAmSAT,COAB,AAMT
B类:
Influence,NAO,Surface,Air,Temperature,over,East,Multidecadal,Variability,Decadal,Prediction,this,paper,investigate,multidecadal,variability,Asian,surface,air,temperature,prediction,observational,analysis,shows,that,minimum,display,strong,phase,fluctuations,significant,apart,from,long,term,warming,experienced,decreasing,last,two,decades,which,consistent,occurrence,extremely,cold,events,winters,recent,years,leads,detrended,by,greatest,positive,correlation,Further,ENSO,may,affect,interannual,but,does,not,robust,relationship,between,We,present,coupled,oceanic,atmospheric,bridge,mechanism,influences,through,its,accumulated,delayed,effect,Atlantic,Oscillation,AMO,Africa,teleconnection,pattern,An,linear,model,predicting,constructed,principle,good,hindcast,performance,predicted,keep,fluctuating,downward,until,implying,high,probability,coming,followed,sudden,turn,towards,sharp,almost,same
AB值:
0.453657
相似文献
Links between winter dust over the Tibetan Plateau and preceding autumn sea ice variability in the Barents and Kara Seas
Chao XU;Jie-Hua MA;Jian-Qi SUN;Chao YOU;Yao-Ming MA;Hui-Jun WANG;Tao WANG-Climate Change Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;CMA Earth System Modeling and Prediction Centre(CEMC),China Meteorological Administration,Beijing 100081,China;Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Key Laboratory of Meteorological Disaster(KLME),Ministry of Education&Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD),Nanjing University of Information Science&Technology,Nanjing 210044,China;College of Environment and Ecology,Chongqing University,Chongqing 400044,China;Land-Atmosphere Interaction and Its Climatic Effects Group,State Key Laboratory of Tibetan Plateau Earth System and Resources Environment(TPESRE),Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China;College of Earth and Planetary Sciences,University of Chinese Academy of Science,Beijing 100049,China;Center for Pan-third Pole Environment,Lanzhou University,Lanzhou 730000,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。