首站-论文投稿智能助手
典型文献
Genome-wide association study and metabolic pathway prediction of barrenness in maize as a response to high planting density
文献摘要:
Increasing the planting density is one way to enhance grain production in maize.However,high planting density brings about growth and developmental defects such as barrenness,which is the major factor limiting grain yield.In this study,the barrenness was characterized in an association panel comprising 280 inbred lines under normal(67 500 plants ha-1,ND)and high(120000 plants ha-1,HD)planting densities in 2017 and 2018.The population was genotyped using 776254 single nucleotide polymorphism(SNP)markers with criteria of minor allele frequency>5%and<20%missing data.A genome-wide association study(GWAS)was conducted for barrenness under ND and HD,as well as the barrenness ratio(HD/ND),by applying a Mixed Linear Model that controls both population structure and relative kinship(Q+K).In total,20 SNPs located in nine genes were significantly(P<6.44×10-8)associated with barrenness under the different planting densities.Among them,seven SNPs for barrenness at ND and HD were located in two genes,four of which were common under both ND and HD.In addition,13 SNPs for the barrenness ratio were located in seven genes.A complementary pathway analysis indicated that the metabolic pathways of amino acids,such as glutamate and arginine,and the mitogen-activated protein kinase(MAPK)signaling pathway might play important roles in tolerance to high planting density.These results provide insights into the genetic basis of high planting density tolerance and will facilitate high vield maize breeding.
文献关键词:
作者姓名:
ZHANG Xu-huan;LIU Hao;MA Xu-hui;ZHOU Gu-yi;RUAN Hong-qiang;CUI Hong-wei;PANG Jun-ling;KHAN Ullah Siffat;ZONG Na;WANG Ren-zhong;LENG Peng-fei;ZHAO Jun
作者机构:
Biotechnology Research Institute,Chinese Academy of Agricultural Sciences,Beijing 100081,P.R.China;State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences,Beijing 100093,P.R.China
引用格式:
[1]ZHANG Xu-huan;LIU Hao;MA Xu-hui;ZHOU Gu-yi;RUAN Hong-qiang;CUI Hong-wei;PANG Jun-ling;KHAN Ullah Siffat;ZONG Na;WANG Ren-zhong;LENG Peng-fei;ZHAO Jun-.Genome-wide association study and metabolic pathway prediction of barrenness in maize as a response to high planting density)[J].农业科学学报(英文),2022(12):3514-3523
A类:
barrenness,Q+K,vield
B类:
Genome,wide,association,study,metabolic,prediction,maize,response,high,planting,density,Increasing,one,enhance,grain,production,However,brings,about,growth,developmental,defects,such,which,major,limiting,yield,this,was,characterized,panel,comprising,inbred,lines,under,normal,plants,ND,HD,densities,population,genotyped,using,single,nucleotide,polymorphism,markers,criteria,minor,allele,frequency,missing,data,genome,GWAS,conducted,well,ratio,by,applying,Mixed,Linear,Model,that,controls,both,structure,relative,kinship,total,SNPs,located,genes,were,significantly,associated,different,Among,them,seven,two,four,common,addition,complementary,analysis,indicated,pathways,amino,acids,glutamate,arginine,mitogen,activated,protein,kinase,MAPK,signaling,might,play,important,roles,tolerance,These,results,provide,insights,into,genetic,basis,will,facilitate,breeding
AB值:
0.496365
相似文献
Genetic architecture of maize yield traits dissected by QTL mapping and GWAS in maize
Xiao Zhang;Zhiyong Ren;Bowen Luo;Haixu Zhong;Peng Ma;Hongkai Zhang;Hongmei Hu;Yikai Wang;Haiying Zhang;Dan Liu;Ling Wu;Zhi Nie;Yonghui Zhu;Wenzhu He;Suzhi Zhang;Shunzong Su;Yaou Shen;Shibin Gao-Maize Research Institute,Sichuan Agricultural University,Chengdu 611130,Sichuan,China;Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region,Ministry of Agriculture,Chengdu 611130,Sichuan,China;Guangxi Qingqing Agricultural Technology CO.,LTD.,Nanning 530000,Guangxi,China;Biotechnology and Nuclear Technology Research Institute,Sichuan Academy of Agricultural Sciences,Chengdu 610066,Sichuan,China;Crop Research Institute,Sichuan Academy of Agricultural Sciences,Chengdu 610066,Sichuan,China;State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China,Chengdu 611130,Sichuan,China;College of Agronomy,Sichuan Agricultural University,Chengdu 611130,Sichuan,China
Fine mapping of an adult-plant resistance gene to powdery mildew in soybean cultivar Zhonghuang 24
Qian Zhou;Bingzhi Jiang;Yanbo Cheng;Qibin Ma;Qiuju Xia;Ze Jiang;Zhandong Cai;Hai Nian-The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,South China Agricultural University,Guangzhou 510642,Guangdong,China;The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology,South China Agricultural University,Guangzhou 510642,Guangdong,China;The Key Laboratory of Plant Molecular Breeding of Guangdong Province,College of Agriculture,South China Agricultural University,Guangzhou 510642,Guangdong,China;Guangdong Provincial Key Laboratory of Crops Genetics and Improvement,Crops Research Institute,Guangdong Academy of Agricultural Sciences,Guangzhou 510642,Guangdong,China;Beijing Genomics Institute(BGI)Education Center,University of Chinese Academy of Sciences,Shenzhen 518083,Guangdong,China
GmPIN1-mediated auxin asymmetry regulates leaf petiole angle and plant architecture in soybean
Zhongqin Zhang;Le Gao;Meiyu Ke;Zhen Gao;Tianli Tu;Laimei Huang;Jiaomei Chen;Yuefeng Guan;Xi Huang;Xu Chen-Key Laboratory of Ministry of Education for Genetics,Breeding and Multiple Utilization of Crops,College of Agriculture,Fujian Agriculture and Forestry University,Fuzhou 350002,China;Haixia Institute of Science and Technology,Horticultural Plant Biology and Metabolomics Center,Fujian Agriculture and Forestry University,Fuzhou 350002,China;Department of Horticulture,Beijing Vocational College of Agriculture,Beijing 102442,China;College of Life Science,Fujian Agriculture and Forestry University,Fuzhou 350002,China;State Key Laboratory of Cellular Stress Biology,School of Life Sciences,Xiamen University,Xiamen 361102,China
The genome of Hibiscus hamabo reveals its adaptation to saline and waterlogged habitat
Zhiquan Wang;Jia-Yu Xue;Shuai-Ya Hu;Fengjiao Zhang;Ranran Yu;Dijun Chen;Yves Van de Peer;Jiafu Jiang;Aiping Song;Longjie Ni;Jianfeng Hua;Zhiguo Lu;Chaoguang Yu;Yunlong Yin;Chunsun Gu-Institute of Botany,Jiangsu Province and Chinese Academy of Sciences,Nanjing,210014,China;College of Horticulture,Academy for Advanced Interdisciplinary Studies,Nanjing Agricultural University,Nanjing 210095,China;State Key Laboratory of Pharmaceutical Biotechnology,School of Life Sciences,Nanjing University,Nanjing 210023,China;Department of Plant Biotechnology and Bioinformatics,Ghent University,VIB-UGent Center for Plant Systems Biology,B-9052 Ghent,Belgium;Department of Biochemistry,Genetics and Microbiology,University of Pretoria,Pretoria 0028,South Africa;College of Horticulture,Nanjing Agricultural University,Nanjing 210095,China;College of Forest Sciences,Nanjing Forestry University,Nanjing,210037,China;Jiangsu Key Laboratory for the Research and Utilization of Plant Resources,Jiangsu Utilization of Agricultural Germplasm,Nanjing,210014,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。