首站-论文投稿智能助手
典型文献
Multi-scale Analysis of the Relationships between Solar Activity, CO2 and Global Surface Temperature
文献摘要:
To reveal whether the dynamics of solar activity precede those of global temperature, especially in terms of global warming, the relationship between total solar irradiance (TSI), which is treated as a proxy of solar activity, and global surface temperature (GST) is investigated in the frequency domain using wavelet coherence. The results suggest that the effect of TSI on GST is mainly reflected on the characteristic scale around 22 yr, and variations in TSI lead to changes in GST with some delay effect as shown by the phase difference arrows. However, this implicated relationship has been perturbed by excessive CO2 emissions since 1960. Through the combination of co-integration analysis and wavelet coherence, the hidden relationship between TSI and GST has been uncovered without the CO2 effect and the results further indicate that TSI has a positive effect on GST at the characteristic scale around 22 yr with a 3 yr lead.
文献关键词:
作者姓名:
Zhen Li;Lijun Chang;Jiahui Lou;Yi Shen;Haoming Yan
作者机构:
College of Surveying and Geo-informatics,North China University of Water Resources and Electric Power,Zhengzhou 450046,China;State Key Laboratory of Geodesy and Earth's Dynamics,Innovation Academy for Precision Measurement Science and Technology,CAS,Wuhan 430077,China;Geological Disaster Prevention and Control Center of Henan Geological Bureau,Zhengzhou 450003,China;School of Geographic Sciences,Xinyang Normal University,Xinyang 464000,China
引用格式:
[1]Zhen Li;Lijun Chang;Jiahui Lou;Yi Shen;Haoming Yan-.Multi-scale Analysis of the Relationships between Solar Activity, CO2 and Global Surface Temperature)[J].天文和天体物理学研究,2022(09):245-254
A类:
arrows
B类:
Multi,scale,Analysis,Relationships,between,Solar,Activity,Global,Surface,Temperature,To,reveal,whether,dynamics,solar,activity,precede,those,global,temperature,especially,terms,warming,relationship,total,irradiance,TSI,which,treated,proxy,surface,GST,investigated,frequency,domain,using,wavelet,coherence,results,suggest,that,effect,mainly,reflected,characteristic,around,yr,variations,lead,changes,some,delay,shown,by,phase,difference,However,this,implicated,been,perturbed,excessive,emissions,since,Through,combination,integration,analysis,hidden,uncovered,without,further,indicate,positive
AB值:
0.544776
相似文献
What Drives the Decadal Variability of Global Tropical Storm Days from 1965 to 2019?
Yifei DAI;Bin WANG;Weiyi SUN-Key Laboratory of Meteorological Disaster of Ministry of Education,and Earth System Modeling Center,Nanjing University of Information Science and Technology,Nanjing 210044,China;International Pacific Research Center,University of Hawaii at Manoa,Honolulu,HI 96822,USA;Department of Atmospheric Sciences,School of Ocean and Earth Science and Technology,University of Hawaii at Manoa,Honolulu,HI 96822,USA;Key Laboratory for Virtual Geographic Environment.Ministry of Education,State Key Laboratory Cultivation Base of Geographical Environment Evolution of Jiangsu Province,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,School of Geography Science,Nanjing Normal University,Nanjing 210023,China
Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction
Jianping LI;Tiejun XIE;Xinxin TANG;Hao WANG;Cheng SUN;Juan FENG;Fei ZHENG;Ruiqiang DING-Frontiers Science Center for Deep Ocean Multispheres and Earth System-Key Laboratory of Physical Oceanography-Institute for Advanced Ocean Studies-Academy of the Future Ocean,Ocean University of China,Qingdao 266100,China;Laboratory for Ocean Dynamics and Climate,Pilot Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China;College of Global Change and Earth System Sciences,Beijing Normal University,Beijing 100875,China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;State Key Laboratory of Earth Surface Processes and Resource Ecology,Beijing Normal University,Beijing 100875,China
Fengyun-4 Geostationary Satellite-Based Solar Energy Nowcasting System and Its Application in North China
Chunlin HUANG;Hongrong SHI;Ling GAO;Mengqi LIU;Qixiang CHEN;Disong FU;Shu WANG;Yuan YUAN;Xiang'ao XIA-Key Laboratory of Aerospace Thermophysics,Ministry of Industry and Information Technology,Harbin Institute of Technology,Harbin 150001,China;Key Laboratory of Middle Atmosphere and Global Environment Observation,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Key Laboratory of Cloud-Precipitation Physics and Severe Storms,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;National Satellite Meteorological Center,China Meteorological Administration,Beijing 100192,China;Key Laboratory of Atmospheric Sounding,Chengdu University of Information Technology,Chengdu 610225,China;State Key Laboratory of Operation and Control of Rene wable Energy&Storage Systems,China Electric Po wer Research Institute(CEPRI),Beijing 100192,China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University ofInformation Science&Technology,Nanjing 210044,China
Simulating Aerosol Optical Depth and Direct Radiative Effects over the Tibetan Plateau with a High-Resolution CAS FGOALS-f3 Model
Min ZHAO;Tie DAI;Hao WANG;Qing BAO;Yimin LIU;Hua ZHANG;Guangyu SHI-State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China;University of Chinese Academy of Sciences,Beijing 100049,China;International Center for Climate and Environment Science,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China
Remote Sensing-based Spatiotemporal Distribution of Grassland Aboveground Biomass and Its Response to Climate Change in the Hindu Kush Himalayan Region
XU Cong;LIU Wenjun;ZHAO Dan;HAO Yanbin;XIA Anquan;YAN Nana;ZENG Yuan-State Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Ecology and Environmental Sci-ences&Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments,Yunnan University,Kun-ming 650091,China;College of Life Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;CAS Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences,Beijing 100101,China;Beijing Yanshan Earth Critical Zone National Research Station,University of Chinese Academy of Sciences,Beijing 101408,China;College of Resources and Envir-onment,University of Chinese Academy of Sciences,Beijing 100049,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。