首站-论文投稿智能助手
典型文献
L2-CONVERGENCE TO NONLINEAR DIFFUSION WAVES FOR EULER EQUATIONS WITH TIME-DEPENDENT DAMPING
文献摘要:
In this paper,we are concerned with the asymptotic behavior of L∞weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)λ.As λ ∈(0,1/7],we prove that the L∞ weak-entropy solution converges to the nonlin-ear diffusion wave of the generalized porous media equation(GPME)in L2(R).As λ ∈(1/7,1),we prove that the L∞ weak-entropy solution converges to an expansion around the nonlinear diffusion wave in L2(R),which is the best asymptotic profile.The proof is based on intensive entropy analysis and an energy method.
文献关键词:
作者姓名:
Shifeng GENG;Feimin HUANG;Xiaochun WU
作者机构:
School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,China;Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China;School of Mathematics and Statistics,HNP-LAMA,Central South University,Changsha 410083,China
引用格式:
[1]Shifeng GENG;Feimin HUANG;Xiaochun WU-.L2-CONVERGENCE TO NONLINEAR DIFFUSION WAVES FOR EULER EQUATIONS WITH TIME-DEPENDENT DAMPING)[J].数学物理学报(英文版),2022(06):2505-2522
A类:
CONVERGENCE,NONLINEAR,DIFFUSION,WAVES,EULER,EQUATIONS,DAMPING,GPME
B类:
L2,TO,FOR,WITH,TIME,DEPENDENT,In,this,paper,are,concerned,asymptotic,behavior,weak,entropy,solutions,compressible,Euler,equations,vacuum,dependent,damping,1+t,prove,that,converges,diffusion,wave,generalized,porous,media,expansion,around,nonlinear,which,best,profile,proof,intensive,analysis,energy,method
AB值:
0.457667
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。