首站-论文投稿智能助手
典型文献
Variation in water supply leads to different responses of tree growth to warming
文献摘要:
Background:Global climate change,characterized by changes in precipitation,prolonged growing seasons,and warming-induced water deficits,is putting increased pressure on forest ecosystems globally.Understanding the impact of climate change on drought-prone forests is a key objective in assessing forest responses to climate change.Methods:In this study,we assessed tree growth trends and changes in physiological activity under climate change based on measurements of tree ring and stable isotopes.Additionally,structural equation models were used to identify the climate drivers influencing tree growth for the period 1957-2016.Results:We found that the mean basal area increment decreased first and then increased,while the water use efficiency showed a steady increase.The effects of climate warming on tree growth switched from negative to positive in the period 1957-2016.Adequate water supply,especially snowmelt water available in the early critical period,combined with an earlier arrival of the growing season,allowed to be the key to the reversal of the effects of warming on temperature forests.The analysis of structural equation models (SEM) also demonstrated that the growth response of Pinus tabuliformis to the observed temperature increase was closely related to the increase in water availability.Conclusions:Our study indicates that warming is not the direct cause of forest decline,but does indeed exacerbate droughts,which generally cause forest declines.Water availability at the beginning of the growing season might be critical in the adaptation to rising temperatures in Asia.Temperate forests may be better able to withstand rising temperatures if they have sufficient water,with boosted growth even possible during periods of rising temperatures,thus forming stronger carbon sinks.
文献关键词:
作者姓名:
Pengfei Zheng;Dandan Wang;Guodong Jia;Xinxiao Yu;Ziqiang Liu;Yusong Wang;Yonge Zhang
作者机构:
Key Laboratory of State Forestry Administration on Soil and Water Conservation,Beijing Forestry University,Beijing,100083,China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research,Beijing,100038,China;Co-Innovation Center for Sustainable Forestry in Southern China,Nanjing Forestry University,Nanjing,210037,China
引用格式:
[1]Pengfei Zheng;Dandan Wang;Guodong Jia;Xinxiao Yu;Ziqiang Liu;Yusong Wang;Yonge Zhang-.Variation in water supply leads to different responses of tree growth to warming)[J].森林生态系统(英文版),2022(01):23-32
A类:
B类:
Variation,water,supply,leads,different,responses,tree,growth,warming,Background,Global,climate,characterized,by,changes,precipitation,prolonged,growing,seasons,induced,deficits,putting,increased,pressure,ecosystems,globally,Understanding,impact,prone,forests,key,objective,assessing,Methods,In,this,study,assessed,trends,physiological,activity,under,measurements,stable,isotopes,Additionally,structural,equation,models,were,used,identify,drivers,influencing,Results,We,found,that,mean,basal,area,increment,decreased,first,then,while,efficiency,showed,steady,effects,switched,from,negative,positive,Adequate,especially,snowmelt,available,early,critical,combined,earlier,arrival,allowed,reversal,analysis,also,demonstrated,Pinus,tabuliformis,observed,was,closely,related,availability,Conclusions,Our,indicates,not,direct,cause,but,does,indeed,exacerbate,droughts,which,generally,declines,Water,beginning,might,adaptation,rising,temperatures,Asia,Temperate,may,better,withstand,they,have,sufficient,boosted,even,possible,during,periods,thus,forming,stronger,carbon,sinks
AB值:
0.560113
相似文献
Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang, Northwest China
HUANG Xiaoran;BAO Anming;GUO Hao;MENG Fanhao;ZHANG Pengfei;ZHENG Guoxiong;YU Tao;QI Peng;Vincent NZABARINDA;DU Weibing-State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,China;University of Chinese Academy of Sciences,Beijing 100049,China;Research Center for Ecology and Environment of Central Asia,Chinese Academy of Sciences,Urumqi 830011,China;China-Pakistan Joint Research Center on Earth Sciences,Chinese Academy of Sciences and Higher Education Commission,Islamabad 45320,Pakistan;School of Geography and Tourism,Qufu Normal University,Rizhao 276800,China;College of Geographical Science,Inner Mongolia Normal University,Hohhot 010022,China;Xuchang University,Xuchang 461000,China;Key Laboratory of Wetland Ecology and Environment,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,China;School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454000,China
Seasonal variations in temperature sensitivity of soil respiration in a larch forest in the Northern Daxing'an Mountains in Northeast China
Lin Yang;Qiuliang Zhang;Zhongtao Ma;Huijun Jin;Xiaoli Chang;Sergey S.Marchenko;Valentin V.Spektor-College of Forestry and Da Xing'anling Forest Ecosystem Research Station of Inner Mongolia Autonomous Region,Inner Mongolia Agricultural University,Hohhot 010019,People's Republic of China;Research-Station of Permafrost Geo-Environment,Ministry of Education,Institute of Cold Regions Science and Engineering and School of Civil Engineering,Northeast Forestry University,Harbin 150040,People's Republic of China;State Key Laboratory of Frozen Soils Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,People's Republic of China;Geophysical Institute,University of Alaska Fairbanks,Fairbanks,AK 99775,USA;Laboratory of General Geocryology,Melnikov Permafrost Institute,Siberia Branch,Russian Academy of Sciences,Yakutsk,Russia 677010
Long-term reconstruction of flash floods in the Qilian Mountains,China,based on dendrogeomorphic methods
QIE Jia-zhi;ZHANG Yong;TRAPPMANN Daniel;ZHONG Yi-hua;BALLESTEROS-CáNOVAS Juan Antonio;FAVILLIER Adrien;STOFFEL Markus-Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;Climate Change Impacts and Risks in the Anthropocene(C-CIA),Institute for Environmental Sciences,University of Geneva,Geneva CH-1205,Switzerland;Dendrolab.ch,Department of Earth Sciences,University of Geneva,Geneva CH-1205,Switzerland;National Museum of Natural Sciences,MNCN-CSIC,C/Serrano 115bis,28006,Madrid,Spain;Department F.-A.Forel for Environmental and Aquatic Sciences,University of Geneva,Geneva CH-1205,Switzerland
Varying contributions of fast and slow responses cause asymmetric tropical rainfall change between CO2 ramp-up and ramp-down
Shijie Zhou;Ping Huang;Shang-Ping Xie;Gang Huang;Lin Wang-Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100190,China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Scripps Institution of Oceanography,University of California San Diego,La Jolla CA 92093,USA;Laboratory for Regional Oceanography and Numerical Modeling,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China;College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。