典型文献
融合多尺度空洞卷积与反卷积的轻量化目标检测
文献摘要:
深度神经网络存在目标检测速度慢、参数量大的问题,不适用于算力有限但速度要求较高的移动应用场景.为了提高目标检测的推理速度,有效权衡目标检测任务的精度与速度,文中提出了一种融合多尺度空洞卷积与反卷积的轻量化目标检测网络MDDNet.首先,基于高效的单阶段多目标检测策略设计了轻量的目标检测基础网络,并引入深度可分离卷积,以进一步减少基础网络的参数量,加快图像特征提取的速度;然后在主干网络中添加两条基于多尺度空洞卷积的特征扩展旁路,分别连接在基础网络的最末端和次末端残差层的输出端,将两条旁路的特征输出到预测层进行特征融合,以增强较低层特征图的纹理特征;并且进一步引入了多尺度反卷积模块,连接于深层特征网络层,以增大特征图尺寸,再融合具有不同尺度的上一层的浅层特征图,以获得更多的特征语义信息和细节信息,提高检测精度;最后在预测层基于K均值算法优化先验框参数,使其与目标真实框更匹配,提高目标识别的准确率.实验结果表明:MDDNet的参数量约为7.21×106,平均检测精度在KITTI、Pascal VOC数据集上分别为58.7%、76.0%,推理速度在两个数据集上分别达到55和52 f/s.因此,MDDNet在参数量、检测速度和检测精度上达到了较佳的平衡,可适用于移动端的实时目标检测.
文献关键词:
目标检测;空洞卷积;反卷积;多尺度;精度-速度均衡
中图分类号:
作者姓名:
易清明;吕人毅;石敏;骆爱文
作者机构:
暨南大学 信息科学技术学院,广东 广州 510632;泰斗微电子科技有限公司,广东 广州 510663
文献出处:
引用格式:
[1]易清明;吕人毅;石敏;骆爱文-.融合多尺度空洞卷积与反卷积的轻量化目标检测)[J].华南理工大学学报(自然科学版),2022(12):41-48
A类:
MDDNet
B类:
空洞卷积,反卷积,轻量化目标检测,深度神经网络,检测速度,速度慢,参数量,算力,移动应用,推理速度,目标检测网络,单阶段,多目标检测,检测策略,策略设计,检测基础,深度可分离卷积,图像特征提取,主干网络,特征扩展,旁路,接在,最末端,输出端,出到,层进,特征融合,低层,特征图,纹理特征,卷积模块,深层特征,网络层,再融合,不同尺度,语义信息,细节信息,高检,检测精度,算法优化,先验框,目标识别,KITTI,Pascal,VOC,上达,较佳,移动端,实时目标检测
AB值:
0.375337
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。