首站-论文投稿智能助手
典型文献
Calculating detonation performance of explosives by VLWR thermodynamics code introduced with universal VINET equation of state
文献摘要:
Thermodynamic calculation is the theoretical basis for the study of initiation and detonation,as well as the prerequisite for forecasting the detonation performance of unknown explosives.Based on the VLWR(Virial-Wu)thermodynamic code,this paper introduced the universal solid equation of state(EOS)VINET.In order to truly reflect the compressibility of nanocarbon under the extremely high-temperature and high-pressure environment in detonation,an SVM(support vector machine)was utilized to optimize the input parameters of carbon.The detonation performance of several explosives with different den-sities was calculated by the optimized universal EOS,and the results show that the thermodynamic code coupled with the universal solid EOS VINET can predict the detonation performance parameters of ex-plosives well.To investigate the application of the thermodynamic code with the improved VINET EOS in the working capacity of explosives,the interrelationship between pressure P-particle velocity u and pressure P-volume V were computed for the detonation products of TNT and HMX-based PBX(HMX:binder:insensitive agent=95:4.3:0.7)in the CJ isentropic state.A universal curve proposed by Cooper was used to compared the computed isentropic state,where the ratio of pressure to CJ state were plotted against the ratio of velocity to CJ state.The parameters of the JWL(Jones-Wilkins-Lee)EOS for detonation products were obtained by fitting the P-V curve.The cylinder tests of TNT and HMX-based PBX were numerically simulated using the LS-DYNA,it is verified that,within a certain range,the improved al-gorithm has superiority in describing the working capacity of explosives.
文献关键词:
作者姓名:
Qin Liu;Ying-liang Duan;Wei Cao;Hong-hao Ma;Xin-ping Long;Yong Han
作者机构:
Institute of Chemical Materials,China Academy of Engineering Physics,Youxian District,621000,Mianyang City,Sichuan Province,China;CAS Key Laboratory of Mechanical Behavior and Design of Materials,Department of Modern Mechanics,School of Engineering Science,University of Science and Technology of China,Hefei,Anhui,230026,PR China;Key Laboratory of Fire Science,University of Science and Technology of China,Hefei,Anhui,230026,PR China;China Academy of Engineering Physics,Youxian District,621000,Mianyang City,Sichuan Province,China
文献出处:
引用格式:
[1]Qin Liu;Ying-liang Duan;Wei Cao;Hong-hao Ma;Xin-ping Long;Yong Han-.Calculating detonation performance of explosives by VLWR thermodynamics code introduced with universal VINET equation of state)[J].防务技术,2022(06):1041-1051
A类:
VLWR,VINET,plosives
B类:
Calculating,detonation,performance,explosives,by,thermodynamics,code,introduced,universal,equation,state,Thermodynamic,calculation,theoretical,basis,study,initiation,well,prerequisite,forecasting,unknown,Based,Virial,Wu,this,paper,solid,EOS,In,order,truly,reflect,compressibility,nanocarbon,under,extremely,high,temperature,pressure,environment,support,vector,machine,was,utilized,input,parameters,several,different,den,sities,calculated,optimized,results,show,that,coupled,can,predict,To,investigate,application,improved,working,capacity,interrelationship,between,particle,velocity,volume,were,computed,products,TNT,HMX,PBX,binder,insensitive,agent,CJ,isentropic,curve,proposed,Cooper,used,compared,where,ratio,plotted,against,JWL,Jones,Wilkins,Lee,obtained,fitting,cylinder,tests,numerically,simulated,using,LS,DYNA,verified,within,certain,range,gorithm,has,superiority,describing
AB值:
0.476044
相似文献
Dynamic analysis of heat extraction rate by supercritical carbon dioxide in fractured rock mass based on a thermal-hydraulic-mechanics coupled model
Chunguang Wang;Xingkai Shi;Wei Zhang;Derek Elsworth;Guanglei Cui;Shuqing Liu;Hongxu Wang;Weiqiang Song;Songtao Hu;Peng Zheng-College of Energy and Mining Engineering,Shandong University of Science and Technology,Qingdao 266590,China;New-energy Development Center of Sinopec Shengli Oilfield,Dongying 257001,China;Energy and Mineral Engineering and G3 Center,Penn State University,University Park,PA 16802,USA;Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines,Northeastern University,Shenyang 110004,China;Shandong Provincial Geo-Mineral Engineering Co.,Ltd,Jinan 250013,China;Qingdao Wofu New Energy Science and Technology Co.,Ltd,Qingdao 266010,China
Experimental and numerical investigation into the non-explosive excavation of tunnels
Quan Zhang;Zhigang Tao;Chun Yang;Shan Guo;Manchao He;Chongyuan Zhang;Huiya Niu;Chao Wang;Shen Wang-School of Mines,China University of Mining and Technology,Xuzhou,Jiangsu,221116,China;State Key Laboratory of Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Beijing,100083,China;School of Resources and Safety Engineering,Central South University,Changsha,410083,China;Department of Mining and Materials Engineering,McGill University,Montreal,QC,H3A 0E8,Canada;Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing,100081,China;College of Environmental Science and Engineering,Ocean University of China,Qingdao,266100,China;School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo,454003,China
Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application
Xin CUI;Changhe LI;Wenfeng DING;Yun CHEN;Cong MAO;Xuefeng XU;Bo LIU;Dazhong WANG;Hao Nan LI;Yanbin ZHANG;Zafar SAID;Sujan DEBNATH;Muhammad JAMIL;Hafiz Muhammad ALI;Shubham SHARMA-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Chengdu Tool Research Institute Co.,Ltd.Chengdu 610500,China;College of Automotive and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410114,China;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310032,China;Sichuan Future Aerospace Industry LLC.,Shifang 618400,China;School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;College of Engineering,University of Sharjah,Sharjah 27272,United Arab Emirates;Mechanical Engineering Department,Curtin University,Miri 98009,Malaysia;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Department of Mechanical Engineering and Advanced Materials Science,Council of Scientific and Industrial Research(CSIR)-Central Leather Research Institute(CLRI),Regional Center for Extension and Development,Jalandhar 144021,India
In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy
L.Tang;F.Q.Jiang;J.S.Wróbel;B.Liu;S.Kabra;R.X.Duan;J.H.Luan;Z.B.Jiao;M.M.Attallah;D.Nguyen-Manh;B.Cai-School of Metallurgy and Materials,University of Birmingham,B15 2TT,United Kingdom;Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;Faculty of Materials Science and Engineering,Warsaw University of Technology,ul.Wo?oska 141,Warsaw 02-507,Poland;State Key Laboratory for Powder Metallurgy,Central South University,Changsha 410083,China;Rutherford Appleton Laboratory,ISIS Facility,Didcot OX11 0QX,United Kingdom;Department of Materials Science and Engineering,City University of Hong Kong,Kowloon,Hong Kong,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hung Hom,Hong Kong,China;CCFE,United Kingdom Atomic Energy Authority,Abingdon,Oxfordshire OX14 3DB,United Kingdom
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。